• Chinese Physics B
  • Vol. 29, Issue 10, (2020)
Ya-Fei Zhang1、2, Yu-Tao Feng1、†, Di Fu1, Peng-Chong Wang1, Jian Sun1, and Qing-Lan Bai1
Author Affiliations
  • 1Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 709, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-1056/ab9de8 Cite this Article
    Ya-Fei Zhang, Yu-Tao Feng, Di Fu, Peng-Chong Wang, Jian Sun, Qing-Lan Bai. Dependence of interferogram phase on incident wavenumber and phase stability of Doppler asymmetric spatial heterodyne spectroscopy[J]. Chinese Physics B, 2020, 29(10): Copy Citation Text show less
    (a) Schematic diagram of typical DASH interferometer, where L1 and L2 are collimating lenses. L3 and L4 are imaging lenses, gratings 1 and 2 are tilted by a Littrow angle θL, Δd is the asymmetric offset of two optical arms. Outgoing wavefronts have the same phase. (b) Schematic diagram of the calculation of OPD. Because wavefronts 1 and 2 have the same phase, the OPD at point X on image plane can be obtained by |BX| + |XA|.
    Fig. 1. (a) Schematic diagram of typical DASH interferometer, where L1 and L2 are collimating lenses. L3 and L4 are imaging lenses, gratings 1 and 2 are tilted by a Littrow angle θL, Δd is the asymmetric offset of two optical arms. Outgoing wavefronts have the same phase. (b) Schematic diagram of the calculation of OPD. Because wavefronts 1 and 2 have the same phase, the OPD at point X on image plane can be obtained by |BX| + |XA|.
    Schematic diagram of wavefronts movement approximation, where red and blue lines represent wavefronts and arrows denote the direction of approximated wavefronts.
    Fig. 2. Schematic diagram of wavefronts movement approximation, where red and blue lines represent wavefronts and arrows denote the direction of approximated wavefronts.
    FOV effects and comparisons at [(a) and (c)] 15873 cm−1 and [(b) and (d)] 15803 cm−1. Red lines represent results calculated from Eq. (5). Black dots denote simulation results. Blue lines indicate averaged difference between calculation and simulation results. Averaged difference is obtained by averaging the absolute values of all differences.
    Fig. 3. FOV effects and comparisons at [(a) and (c)] 15873 cm−1 and [(b) and (d)] 15803 cm−1. Red lines represent results calculated from Eq. (5). Black dots denote simulation results. Blue lines indicate averaged difference between calculation and simulation results. Averaged difference is obtained by averaging the absolute values of all differences.
    Phase comparisons of OPD offset effect (a) at 15873 cm−1 and (b) at 15803 cm−1. Red lines represent results calculatedfrom Eq. (5). Black triangles represent simulation results. Blue lines indicate averaged difference between calculation and simulation results.
    Fig. 4. Phase comparisons of OPD offset effect (a) at 15873 cm−1 and (b) at 15803 cm−1. Red lines represent results calculatedfrom Eq. (5). Black triangles represent simulation results. Blue lines indicate averaged difference between calculation and simulation results.
    (a) Averaged interferogram from five recorded pictures. (b) Analysis signal generated from the selected area shown in panel (a). (c) Schematic diagram of inversion phase from analysis signal shown in panel (b). Blue points indicate the retrieved raw phase and red points reptrsent the unwrapped phase.
    Fig. 5. (a) Averaged interferogram from five recorded pictures. (b) Analysis signal generated from the selected area shown in panel (a). (c) Schematic diagram of inversion phase from analysis signal shown in panel (b). Blue points indicate the retrieved raw phase and red points reptrsent the unwrapped phase.
    Phase variations at 512nd pixel when grating on the linear stage is gradually moved.
    Fig. 6. Phase variations at 512nd pixel when grating on the linear stage is gradually moved.
    Ya-Fei Zhang, Yu-Tao Feng, Di Fu, Peng-Chong Wang, Jian Sun, Qing-Lan Bai. Dependence of interferogram phase on incident wavenumber and phase stability of Doppler asymmetric spatial heterodyne spectroscopy[J]. Chinese Physics B, 2020, 29(10):
    Download Citation