• Chinese Journal of Lasers
  • Vol. 51, Issue 6, 0601001 (2024)
Lingfa Zeng1, Yujun Wen1, Xiaolin Wang1、2、3、*, Peng Wang1、2、3, Xiaoming Xi1、2、3, Baolai Yang1、2、3, Hanwei Zhang1、2、3, Fengjie Xi1、2、3, Kai Han1、2, Zefeng Wang1、2、3, and Xiaojun Xu1、2、3
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan , China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, Hunan , China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, Hunan , China
  • show less
    DOI: 10.3788/CJL230782 Cite this Article Set citation alerts
    Lingfa Zeng, Yujun Wen, Xiaolin Wang, Peng Wang, Xiaoming Xi, Baolai Yang, Hanwei Zhang, Fengjie Xi, Kai Han, Zefeng Wang, Xiaojun Xu. Experimental Research on Abnormal Transverse Mode Instability in High-Power Fiber Lasers[J]. Chinese Journal of Lasers, 2024, 51(6): 0601001 Copy Citation Text show less
    References

    [1] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).

    [2] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).

    [3] Zuo J X, Lin X C. High-power laser systems[J]. Laser & Photonics Reviews, 16, 2100741(2022).

    [4] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).

    [5] Zervas M N. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers[J]. Optics Express, 27, 19019-19041(2019).

    [6] Dong L, Ballato J, Kolis J. Power scaling limits of diffraction-limited fiber amplifiers considering transverse mode instability[J]. Optics Express, 31, 6690-6703(2023).

    [7] Ye Y, Yang B L, Wang X L et al. Experimental study of SRS threshold dependence on the bandwidths of fiber Bragg gratings in co-pumped and counter-pumped fiber laser oscillator[J]. Journal of Optics, 21, 025801(2019).

    [8] Li T L, Ke W W, Ma Y et al. Suppression of stimulated Raman scattering in a high-power fiber amplifier by inserting long transmission fibers in a seed laser[J]. Journal of the Optical Society of America B, 36, 1457-1465(2019).

    [9] Wang M, Zhang Y J, Wang Z F et al. Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers[J]. Optics Express, 25, 1529-1534(2017).

    [10] Nodop D, Jauregui C, Jansen F et al. Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers[J]. Optics Letters, 35, 2982-2984(2010).

    [11] Li H, Wang M, Wu B Y et al. Femtosecond cascade chirped and tilted fiber Bragg gratings for Raman filtering[J]. Acta Optica Sinica, 43, 1036001(2023).

    [12] Eidam T, Hanf S, Seise E et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 35, 94-96(2010).

    [13] Stutzki F, Otto H J, Jansen F et al. High-speed modal decomposition of mode instabilities in high-power fiber lasers[J]. Optics Letters, 36, 4572-4574(2011).

    [14] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 19, 10180-10192(2011).

    [15] Jauregui C, Eidam T, Limpert J et al. The impact of modal interference on the beam quality of high-power fiber amplifiers[J]. Optics Express, 19, 3258-3271(2011).

    [16] Eidam T, Wirth C, Jauregui C et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 19, 13218-13224(2011).

    [17] Jauregui C, Eidam T, Otto H J et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 20, 12912-12925(2012).

    [18] Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 20, 11407-11422(2012).

    [19] Jansen F, Stutzki F, Otto H J et al. Thermally induced waveguide changes in active fibers[J]. Optics Express, 20, 3997-4008(2012).

    [20] Naderi S, Dajani I, Grosek J et al. Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers[J]. Proceedings of SPIE, 8964, 89641W(2014).

    [21] Tao R M, Ma P F, Wang X L et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE Journal of Quantum Electronics, 51, 1600106(2015).

    [22] Hejaz K, Norouzey A, Poozesh R et al. Controlling mode instability in a 500 W ytterbium-doped fiber laser[J]. Laser Physics, 24, 025102(2014).

    [23] Wan Y C, Yang B L, Xi X M et al. Transverse mode instability effect of fiber lasers with different pump wavelengths[J]. Infrared and Laser Engineering, 51, 20210256(2022).

    [24] Wan Y C, Xi X M, Yang B L et al. Enhancement of TMI threshold in Yb-doped fiber laser by optimizing pump wavelength[J]. IEEE Photonics Technology Letters, 33, 656-659(2021).

    [25] Roohforouz A, Chenar R E, Azizi S et al. Effect of pumping configuration on the transverse mode instability power threshold in a 3.02 kW fiber laser oscillator[C], JM5A.29(2019).

    [26] Tao R M, Ma P F, Wang X L et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 14, 025002(2017).

    [27] Shi C, Su R T, Zhang H W et al. Experimental study of output characteristics of bi-directional pumping high power fiber amplifier in different pumping schemes[J]. IEEE Photonics Journal, 9, 1502910(2017).

    [28] Huang Z M, Shu Q A, Luo Y et al. 3.5 kW narrow-linewidth monolithic fiber amplifier at 1064  nm by employing a confined doping fiber[J]. Journal of the Optical Society of America B, 38, 2945-2952(2021).

    [29] Zhang F F, Wang Y B, Lin X F et al. Gain-tailored Yb/Ce codoped aluminosilicate fiber for laser stability improvement at high output power[J]. Optics Express, 27, 20824-20836(2019).

    [30] Zhang Z L, Lin X F, Zhang X et al. Low-numerical aperture confined-doped long-tapered Yb-doped silica fiber for a single-mode high-power fiber amplifier[J]. Optics Express, 30, 32333-32346(2022).

    [31] Tao R M, Su R T, Ma P F et al. Suppressing mode instabilities by optimizing the fiber coiling methods[J]. Laser Physics Letters, 14, 025101(2017).

    [32] Wang X L, Wen Y J, Zhang H W et al. Yb-doped fiber laser with variable core diameter: present situation and trend[J]. Chinese Journal of Lasers, 49, 2100001(2022).

    [33] Zhang Z L, Lin X F, Li W Z et al. Realization of 4 kW near diffraction limit laser output with low numerical aperture partially doped spindle fiber[J]. Chinese Journal of Lasers, 49, 1315002(2022).

    [34] Su R T, Tao R M, Wang X L et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Physics Letters, 14, 085102(2017).

    [35] Beier F, Hupel C, Nold J et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 24, 6011-6020(2016).

    [36] Wang J M, Yan D P, Xiong S S et al. Mode instability in high power all-fiber amplifier with large-mode-area gain fiber[J]. Optics Communications, 396, 123-126(2017).

    [37] Haarlammert N, Sattler B, Liem A et al. Optimizing mode instability in low-NA fibers by passive strategies[J]. Optics Letters, 40, 2317-2320(2015).

    [38] Zhang F F, Xu H Z, Xing Y B et al. Bending diameter dependence of mode instabilities in multimode fiber amplifier[J]. Laser Physics Letters, 16, 035104(2019).

    [39] Wen Y J, Wang P, Shi C et al. Experimental study on transverse mode instability characteristics of few-mode fiber laser amplifier under different bending conditions[J]. IEEE Photonics Journal, 14, 1539106(2022).

    [40] Wen Y J, Wang P, Xi X M et al. High beam quality 10,000-watt fiber laser directly pumped by laser diode[J]. Acta Physica Sinica, 71, 244202(2022).

    [41] Chu Q H, Tao R M, Li C Y et al. Experimental study of the influence of mode excitation on mode instability in high power fiber amplifier[J]. Scientific Reports, 9, 9396(2019).

    [42] Wu H S, Li H B, An Y et al. Transverse mode instability mitigation in a high-power confined-doped fiber amplifier with good beam quality through seed laser control[J]. High Power Laser Science and Engineering, 10, e44(2022).

    [43] Tao R M, Ma P F, Wang X L et al. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers[J]. Journal of Optics, 18, 065501(2016).

    [44] Chu Q H, Shu Q A, Chen Z et al. Experimental study of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers[J]. Photonics Research, 8, 595-600(2020).

    [45] Beyer E, Mahrle A, Lütke M et al. Innovations in high power fiber laser applications[J]. Proceedings of SPIE, 8237, 823717(2012).

    Lingfa Zeng, Yujun Wen, Xiaolin Wang, Peng Wang, Xiaoming Xi, Baolai Yang, Hanwei Zhang, Fengjie Xi, Kai Han, Zefeng Wang, Xiaojun Xu. Experimental Research on Abnormal Transverse Mode Instability in High-Power Fiber Lasers[J]. Chinese Journal of Lasers, 2024, 51(6): 0601001
    Download Citation