• Photonics Research
  • Vol. 12, Issue 6, 1239 (2024)
Yulu Chen, Cong Zhai, Xiaoqing Gao, Han Wang..., Zuzeng Lin, Xiaowei Zhou and Chunguang Hu*|Show fewer author(s)
Author Affiliations
  • State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.1364/PRJ.517601 Cite this Article Set citation alerts
    Yulu Chen, Cong Zhai, Xiaoqing Gao, Han Wang, Zuzeng Lin, Xiaowei Zhou, Chunguang Hu, "Optical manipulation of ratio-designable Janus microspheres," Photonics Res. 12, 1239 (2024) Copy Citation Text show less
    References

    [1] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156-159(1970).

    [2] A. Ashkin, J. M. Dziedzic. Optical levitation by radiation pressure. Appl. Phys. Lett., 19, 283-285(1971).

    [3] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [4] H. He, M. E. J. Friese, N. R. Heckenberg. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett., 75, 826-829(1995).

    [5] L. Paterson, M. P. MacDonald, J. Arlt. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [6] M. Chen, S. Huang, X. Liu. Optical trapping and rotating of micro-particles using the circular Airy vortex beams. Appl. Phys. B, 125, 184(2019).

    [7] Y. Zhou, S. Li, J. Gao. All-fiber rotary micromotor based on laser-induced thermal convection. Opt. Laser Technol., 165, 109639(2023).

    [8] Q. Wang, C. Tu, H. He. Local angular momentum induced dual orbital effect. APL Photon., 7, 086102(2022).

    [9] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394, 348-350(1998).

    [10] A. L. Porta, M. D. Wang. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett., 92, 190801(2004).

    [11] J. Ahn, Z. Xu, J. Bang. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).

    [12] P. H. Jones, F. Palmisano, F. Bonaccorso. Rotation detection in light-driven nanorotors. ACS Nano, 3, 3077-3084(2009).

    [13] D. B. Ciriza, A. Callegari, M. G. Donato. Optically driven Janus microengine with full orbital motion control. ACS Photon., 10, 3223-3232(2023).

    [14] X. Liu, Q. Gao, Y. Zhang. In vivo optofluidic switch for controlling blood microflow. Adv. Sci., 7, 2001414(2020).

    [15] E. Ortiz-Rivero, K. Prorok, M. Skowicki. Single-cell biodetection by upconverting microspinners. Small, 15, 1904154(2019).

    [16] H. Ding, P. S. Kollipara, K. Yao. Multimodal optothermal manipulations along various surfaces. ACS Nano, 17, 9280-9289(2023).

    [17] H. Xin, N. Zhao, Y. Wang. Optically controlled living micromotors for the manipulation and disruption of biological targets. Nano Lett., 20, 7177-7185(2020).

    [18] S. Forth, C. Deufel, M. Y. Sheinin. Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. Phys. Rev. Lett., 100, 148301(2008).

    [19] A. Ramaiya, B. Roy, M. Bugiel. Kinesin rotates unidirectionally and generates torque while walking on microtubules. Proc. Natl. Acad. Sci. USA, 114, 10894-10899(2017).

    [20] C. Deufel, S. Forth, C. R. Simmons. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat. Med., 4, 223-225(2007).

    [21] J. Ma, L. Bai, M. D. Wang. Transcription under torsion. Science, 340, 1580-1583(2013).

    [22] T. T. Le, X. Gao, S. Park. Synergistic coordination of chromatin torsional mechanics and topoisomerase activity. Cell, 179, 619-631(2019).

    [23] X. Zou, Q. Zheng, D. Wu. Controllable cellular micromotors based on optical tweezers. Adv. Funct. Mater., 30, 2002081(2020).

    [24] U. G. Būtaitė, G. M. Gibson, Y. L. D. Ho. Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation. Nat. Commun., 10, 1215(2019).

    [25] Y. Wu, T. Si, J. Shao. Near-infrared light-driven Janus capsule motors: fabrication, propulsion, and simulation. Nano Res., 9, 3747-3756(2016).

    [26] G. Tkachenko, V. G. Truong, C. L. Esporlas. Evanescent field trapping and propulsion of Janus particles along optical nanofibers. Nat. Commun., 14, 1691(2023).

    [27] X. Peng, Z. Chen, P. S. Kollipara. Opto-thermoelectric microswimmers. Light Sci. Appl., 9, 141(2020).

    [28] J. Köhler, S. I. Ksouri, C. Esen. Optical screw-wrench for microassembly. Microsyst. Nanoeng., 3, 16083(2017).

    [29] S. Bianchi, G. Vizsnyiczai, S. Ferretti. An optical reaction micro-turbine. Nat. Commun., 9, 4476(2018).

    [30] S. Kuhn, P. Asenbaum, A. Kosloff. Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum. Nano Lett., 15, 5604-5608(2015).

    [31] Y. Jin, J. Yan, S. J. Rahman. 6  GHz hyperfast rotation of an optically levitated nanoparticle in vacuum. Photon. Res., 9, 1344-1350(2021).

    [32] R. Reimann, M. Doderer, E. Hebestreit. GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett., 121, 033602(2018).

    [33] Y. Arita, M. Mazilu, K. Dholakia. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun., 4, 2374(2013).

    [34] F. Monteiro, S. Ghosh, E. C. Assendelft. Optical rotation of levitated spheres in high vacuum. Phys. Rev. A, 97, 051802(2018).

    [35] X. Fan, J. Yang, X. J. Loh. Polymeric Janus nanoparticles: recent advances in synthetic strategies, materials properties, and applications. Macromol. Rapid Commun., 40, 1800203(2019).

    [36] Y. Duan, X. Zhao, M. Sun. Research advances in the synthesis, application, assembly, and calculation of Janus materials. Ind. Eng. Chem. Res., 60, 1071-1095(2021).

    [37] Y. Zong, J. Liu, R. Liu. An optically driven bistable Janus rotor with patterned metal coatings. ACS Nano, 9, 10844-10851(2015).

    [38] S. Nedev, S. Carretero-Palacios, P. Kühler. An optically controlled microscale elevator using plasmonic Janus particles. ACS Photon., 2, 491-496(2015).

    [39] X. Gao, Y. Wang, X. He. Angular trapping of spherical Janus particles. Small Methods, 4, 2000565(2020).

    [40] X. Gao, C. Zhai, Z. Lin. Simulation and experiment of the trapping trajectory for Janus particles in linearly polarized optical traps. Micromachines, 13, 608(2022).

    [41] P. C. Waterman. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D, 3, 825-839(1971).

    [42] F. Moreno, F. González. Light Scattering from Microstructures(2000).

    [43] F. M. Kahnert. Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 775-824(2003).

    [44] T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg. Multipole expansion of strongly focussed laser beams. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 1005-1017(2003).

    [45] T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe. T-matrix method for modelling optical tweezers. J. Mod. Opt., 58, 528-544(2011).

    [46] C. H. Choi, J. Ivanic, M. S. Gordon. Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys., 111, 8825-8831(1999).

    [47] N. A. Gumerov, R. Duraiswami. Fast, exact, and stable computation of multipole translation and rotation coefficients for the 3-D Helmholtz equation(2001).

    [48] N. A. Gumerov, R. Duraiswami. Recursions for the computation of multipole translation and rotation coefficients for the 3-D helmholtz equation. SIAM J. Sci. Comput., 25, 1344-1381(2004).

    [49] A. Doicu, T. Wriedt. Computation of the beam-shape coefficients in the generalized Lorenz–Mie theory by using the translational addition theorem for spherical vector wave functions. Appl. Opt., 36, 2971-2978(1997).

    [50] L. Travis, M. Mishchenko, A. Lacis. Scattering, Absorption, and Emission of Light by Small Particles(2002).

    [51] M. I. Mishchenko. Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Am. A, 8, 871-882(1991).

    [52] T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg. Numerical modelling of optical trapping. Comput. Phys. Commun., 142, 468-471(2001).

    [53] A. Quirantes. A T-matrix method and computer code for randomly oriented, axially symmetric coated scatterers. J. Quant. Spectrosc. Radiat. Transfer, 92, 373-381(2005).

    [54] B. Peterson, S. Ström. T-matrix formulation of electromagnetic scattering from multilayered scatterers. Phys. Rev. D, 10, 2670-2684(1974).

    [55] N. G. Min, B. Kim, T. Y. Lee. Anisotropic microparticles created by phase separation of polymer blends confined in monodisperse emulsion drops. Langmuir, 31, 937-943(2015).

    [56] Z. Nie, W. Li, M. Seo. Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J. Am. Chem. Soc., 128, 9408-9412(2006).

    [57] M. Ren, W. Guo, H. Guo. Microfluidic fabrication of bubble-propelled micromotors for wastewater treatment. ACS Appl. Mater. Interfaces, 11, 22761-22767(2019).

    [58] M. Hussain, J. Xie, K. Wang. Biodegradable polymer microparticles with tunable shapes and surface textures for enhancement of dendritic cell maturation. ACS Appl. Mater. Interfaces, 11, 42734-42743(2019).

    [59] S. K. Nam, J. B. Kim, S. H. Han. Photonic Janus balls with controlled magnetic moment and density asymmetry. ACS Nano, 14, 15714-15722(2020).

    [60] T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg. Calculation of the T-matrix: general considerations and application of the point-matching method. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 1019-1029(2003).

    [61] T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe. Optical tweezers computational toolbox. J. Opt. A, 9, S196-S203(2007).

    Yulu Chen, Cong Zhai, Xiaoqing Gao, Han Wang, Zuzeng Lin, Xiaowei Zhou, Chunguang Hu, "Optical manipulation of ratio-designable Janus microspheres," Photonics Res. 12, 1239 (2024)
    Download Citation