• Chinese Journal of Lasers
  • Vol. 40, Issue 12, 1213001 (2013)
Wang Xiaozhang*, Li Qi, Zhong Wen, and Wang Qi
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201340.1213001 Cite this Article Set citation alerts
    Wang Xiaozhang, Li Qi, Zhong Wen, Wang Qi. Drift Behavior of Airy Beams in Turbulence Simulated by Using a Liquid Crystal Spatial Light Modulator[J]. Chinese Journal of Lasers, 2013, 40(12): 1213001 Copy Citation Text show less
    References

    [1] G A Siviloglou, D N Christodoulides. Observation of accelerating Airy beam[J]. Phys Rev Lett, 2007, 99(21): 213901.

    [2] Yi Hu, Peng Zhang, Cibo Lou, et al.. Optimal control of the ballistic motion of Airy beams[J]. Opt Lett, 2010, 35(13): 2260-2262.

    [3] T Ellenbogen, N Voloch-Bloch, A Ganany-Padowicz, et al.. Nonlinear generation and manipulation of Airy beams[J]. Nature Photonics, 2009, 3(7): 395-398.

    [4] J Baumgartl, M Mzailu, K Dholakia. Optically mediated particle clearing using Airy wave packets[J]. Nature Photonics, 2008, 2(11): 675-678.

    [5] D Abdollahpour, S Suntsov, D G Papazoglou, et al.. Spatiotemporal Airy light bullets in the linear and nonlinear regimes[J]. Phys Rev Lett, 2010, 105(25): 253901.

    [6] Yalong Gu, Greg Hbur. Scintillation of Airy beam arrays in atmospheric turbulence[J]. Opt Lett, 2010, 35(20): 3456-3458.

    [7] Halil T Eyyuboglu. Scintillation behavior of Airy beam[J]. Optics & Laser Technology, 2013, 47: 232-236.

    [8] Xiuxiang Chu. Evolution of an Airy beam in turbulence[J]. Opt Lett, 2011, 36(14): 2701-2703.

    [9] Rumao Tao, Lei Si, Yanxing Ma, et al.. Average spreading of finite energy Airy beams in non-Kolmogorov turbulence[J]. Optics & Lasers in Engineering, 2013, 51(4): 488-492.

    [10] F Santiago, C O Font, C C Wilcox, et al.. Study on the implementation of spatial light modulator liquid crystal device atmospheric simulator for short wavelength infrared applications[C]. SPIE, 2011, 7923: 79230R.

    [11] J D Schmidt, M E Goda, B D Duncan. Emulating bulk turbulence with a liquid crystal spatial light modulator[C]. SPIE, 2006, 6306: 63060O.

    [12] P Jacquemin, B Fernandez, C C Wilcox, et al.. Deep Horizontal Atmospheric Turbulence Modeling and Simulation with a Liquid Crystal Spatial Light Modulator[R]. NTIS, 2012.

    [13] Xiaozhang Wang, Qi Li, Qi Wang. Arbitrary scanning of the Airy beams using additional phase grating with cubic phase mask[J]. Appl Opt, 2012, 51(28): 6726-6731.

    [14] Xiaozhang Wang, Qi Li, Zhipeng Xiong, et al.. Generation and scanning of Airy beams array by combining multiphase patterns[J]. Appl Opt, 2013, 52(13): 3039-3047.

    [15] Zhou Wenming, Xu Jun, Zhang Qinghua, et al.. Numeric simulation of laser propagation in atmospheric turbulence[J]. Chinese J Lasers, 2004, 31(s1): 499-502.

    [16] Shen Baoliang, Sun Jianfeng, Zhou Yu, et al.. Influence of time-varying atmospheric turbulence to facular orientation deviation in dynamic process[J]. Chinese J Lasers, 2011, 38(8): 0805004.

    [17] Wang Sanhong, Liang Yonghui, Long Xuejun, et al.. Multilevel wavefront correction technique based on stochastic parallel gradient descent algorithm[J]. Chinese J Lasers, 2009, 36(5): 1091-1096.

    [18] Rao Ruizhong.Modern Atmospheric Optics[M]. Beijing: Science Press, 2012. 382-383.

    [19] E M Johansson, D T Gavel. Simulation of stellar speckle imaging[C]. SPIE, 1994, 2200: 372-383.

    [20] J M Martin, Stanley M Flatte. Intensity images and statistics from numerical simulation of wave propagation in 3-D random media[J]. Appl Opt, 1988, 27(11): 2111-2126.

    [21] C Paterson. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Phys Rev Lett, 2005, 94(15): 153901.

    [22] Xinghua Wang, Bin Wang, P J Bos, et al.. Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator[J]. Opt Eng, 2007, 46(4): 044001.

    [23] Liu Jun, Wu Pengli, Gao Ming. Wander and spreading of polarized and partially coherent laser propagation on slant path in turbulence atmospheric[J]. Chinese J Lasers, 2012, 39(10): 1013001.

    [24] Liu Yunqing, Jiang Huilin, Tong Shoufeng. Study on stabilizational tracking technology for atmospheric laser communication system[J]. Chinese J Lasers, 2011, 38(5): 0505005.

    CLP Journals

    [1] Cheng Zhen, Chu Xingchun, Zhao Shanghong, Deng Boyu, Zhang Xiwen. Research Progress of Airy Beam′s Propagation Trajectory Control[J]. Laser & Optoelectronics Progress, 2015, 52(6): 60002

    [2] Cheng Zhen, Chu Xingchun, Zhao Shanghong, Deng Boyu, Zhang Xiwen. Study of the Drift Characteristics of Airy Vortex Beam in Atmospheric Turbulence[J]. Chinese Journal of Lasers, 2015, 42(12): 1213002

    [3] Yang Bin, Qin Yali, Liu Xian, Ren Hongliang, Xue Linlin. Self-Healing Property of Two-Dimensional Airy Beams[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70501

    [4] Lu Qiang, Sheng Lei, Zhang Xin, Bai Jiqing, Qiao Yanfeng. Investigation on Pure Phase Modulation Characteristics of Liquid Crystal Spatial Light Modulator at Oblique Incidence[J]. Chinese Journal of Lasers, 2016, 43(1): 112001

    [5] Huang Huiling, Chen Ziyang, Sun Cunzhi, Pu Jixiong. Focusing Laser Beams through Opaque Scattering Media[J]. Chinese Journal of Lasers, 2015, 42(6): 602004

    [6] Wang Yaqian, Ren Zhijun, Li Xiaodong. Poynting Vector and Angular Momentum of Accelerating Quad Airy Beams[J]. Acta Optica Sinica, 2015, 35(12): 1226001

    [7] Cheng Zhen, Zhao Shanghong, Chu Xingchun, Deng Boyu, Zhang Xiwen. Research Progress of the Generation Methods of Airy Beam[J]. Laser & Optoelectronics Progress, 2015, 52(3): 30008

    [8] Deng Xiangquan, Xu Shixiang, Wu Qingyang, Zheng Guoliang. Design of Super-Airy Beam Laser[J]. Laser & Optoelectronics Progress, 2016, 53(10): 102601

    Wang Xiaozhang, Li Qi, Zhong Wen, Wang Qi. Drift Behavior of Airy Beams in Turbulence Simulated by Using a Liquid Crystal Spatial Light Modulator[J]. Chinese Journal of Lasers, 2013, 40(12): 1213001
    Download Citation