• Photonics Research
  • Vol. 12, Issue 9, 1954 (2024)
Shahrzad Khajavi1,*, Jianhao Zhang2, Pavel Cheben2, Daniele Melati3..., Jens H. Schmid2, Ross Cheriton2, Martin Vachon2, Shurui Wang2, Ahmad Atieh4, Carlos Alonso Ramos3 and Winnie N. Ye1|Show fewer author(s)
Author Affiliations
  • 1Department of Electronics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
  • 2National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
  • 3Centre for Nanoscience and Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France
  • 4Optiwave Systems Inc., Nepean, Ontario K2E 8A7, Canada
  • show less
    DOI: 10.1364/PRJ.515222 Cite this Article Set citation alerts
    Shahrzad Khajavi, Jianhao Zhang, Pavel Cheben, Daniele Melati, Jens H. Schmid, Ross Cheriton, Martin Vachon, Shurui Wang, Ahmad Atieh, Carlos Alonso Ramos, Winnie N. Ye, "Experimental demonstration of a silicon nanophotonic antenna for far-field broadened optical phased arrays," Photonics Res. 12, 1954 (2024) Copy Citation Text show less
    References

    [1] A. Rickman. The commercialization of silicon photonics. Nat. Photonics, 8, 579-582(2014).

    [2] X. Chen, M. M. Milosevic, S. Stanković. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE, 106, 2101-2116(2018).

    [3] D. Dai, D. I. Liang, P. Cheben. Next-generation silicon photonics: introduction. Photon. Res., 10, NGSP1-NGSP3(2022).

    [4] C. R. Doerr, R. Baets. Special issue of silicon photonics [Scanning the Issue]. Proc. IEEE, 106, 2098-2100(2018).

    [5] J. Wang, F. Sciarrino, A. Laing. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2019).

    [6] D. Thomson, A. Zilkie, J. E. Bowers. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [7] R. Baets, A. Z. Subramanian, S. Clemmen. Silicon photonics: silicon nitride versus silicon-on-insulator. Optical Fiber Communications Conference and Exhibition (OFC), Th3J.1(2016).

    [8] D. Melati, M. K. Dezfouli, Y. Grinberg. Design of compact and efficient silicon photonic micro antennas with perfectly vertical emission. IEEE J. Sel. Top. Quantum Electron., 27, 8200110(2021).

    [9] M. J. R. Heck. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics, 6, 93-107(2017).

    [10] F. Aflatouni, B. Abiri, A. Rekhi. Nanophotonic projection system. Opt. Express, 23, 21012-21022(2015).

    [11] T. Kim, P. Bhargava, C. V. Poulton. A single-chip optical phased array in a wafer-scale silicon photonics/CMOS 3D-integration platform. IEEE J. Solid-State Circuits, 54, 3061-3074(2019).

    [12] S. Lin, Y. Chen, Z. J. Wong. High-performance optical beam steering with nanophotonics. Nanophotonics, 11, 2617-2638(2022).

    [13] J. Sun, E. Timurdogan, A. Yaacobi. Large-scale nanophotonic phased array. Nature, 493, 195-199(2013).

    [14] H. Abediasl, H. Hashemi. “Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt. Express, 23, 6509-6519(2015).

    [15] Y. Guo, Y. Guo, C. Li. Integrated optical phased arrays for beam forming and steering. Appl. Sci., 11, 4017(2021).

    [16] J. He, T. Dong, Y. Xu. Review of photonic integrated optical phased arrays for space optical communication. IEEE Access, 8, 188284(2020).

    [17] C. Y. Hsu, G. Z. Yiu, Y. C. Chang. Free-space applications of silicon photonics: a review. Micromachines, 13, 990(2022).

    [18] A. Khachaturian, R. Fatemi, A. Hajimiri. Achieving full grating-lobe-free field of view with low-complexity co-prime photonic beamforming transceivers. Photon. Res., 10, A66-A73(2022).

    [19] D. Vermeulen, D. B. Cole, M. Raval. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett., 42, 4091-4094(2017).

    [20] C. V. Poulton, M. J. Byrd, P. Russo. Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 25, 7700108(2019).

    [21] M. Chalupnik, A. Singh, J. Leatham. Scalable and ultralow power silicon photonic two-dimensional phased array. APL Photon., 8, 051305(2023).

    [22] Z. Ma, Y. Wan, H. Liang. Photonic integrated optical phased arrays and their applications. Chin. Opt. Lett., 22, 020041(2024).

    [23] D. Liang, W. Li, X. Wang. Grating lobe-free silicon optical phased array with periodically bending modulation of dense antennas. Opt. Express, 31, 11423-11430(2023).

    [24] Y. Zhang, R. Wang, M. Wei. Design of high-efficiency and large-field silicon-based transceiver integrated optical phased array. Opt. Laser Technol., 171, 110421(2024).

    [25] D. Lian, S. Zhao, W. Li. Grating-lobe-free optical phased array with 2-D circular sparse array aperture and high-efficiency phase calibration. Nanophotonics, 13, 29-37(2024).

    [26] D. Melati, Y. Grinberg, M. K. Dezfouli. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun., 10, 4775(2019).

    [27] T. Watanabe, M. Ayata, U. Koch. Perpendicular grating coupler based on a blazed antiback-reflection structure. J. Lightwave Technol., 35, 4663-4669(2017).

    [28] Y. Tong, W. Zhou, H. K. Tsang. Efficient perfectly vertical grating coupler for multi-core fibers fabricated with 193 nm DUV lithography. Opt. Lett., 43, 5709-5712(2018).

    [29] M. Lu, M. Dai, L. Ma. Highly efficient and perfectly vertical chip-to-fiber dual-layer grating coupler. Opt. Express, 23, 1691-1698(2015).

    [30] G. Roelkens, D. Taillaert, R. Baets. Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J. Lightwave Technol., 25, 151-156(2007).

    [31] C. Alonso-Ramos, V. Vakarin, X. Le Roux. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography. Opt. Lett., 42, 3439-3442(2017).

    [32] D. Benedikovic, P. Cheben, J. H. Schmid. High-efficiency single etch step apodized surface grating coupler using subwavelength structure. Laser Photon. Rev., 8, L93-L97(2014).

    [33] R. Halir, A. Ortega-Moñux, D. Benedikovic. Subwavelength-grating metamaterial structures for silicon photonic devices. Proc. IEEE, 106, 2144-2157(2018).

    [34] D. Benedikovic, C. Alonso-Ramos, S. Guerber. “Sub-decibel silicon grating couplers based on L-shaped waveguides and engineered subwavelength metamaterials. Opt. Express, 27, 26239-26250(2019).

    [35] D. Benedikovic, C. Alonso-Ramos, P. Cheben. High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure. Opt. Lett., 40, 4190-4193(2015).

    [36] C. Alonso-Ramos, P. Cheben, A. Ortega-Moñux. Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95%. Opt. Lett., 39, 5351-5354(2014).

    [37] A. Bozzola, L. Carroll, D. Gerace. Optimising apodized grating couplers in a pure SOI platform to −0.5  dB coupling efficiency. Opt. Express, 23, 16289-16304(2015).

    [38] S. Khajavi, D. Melati, P. Cheben. Highly-efficient subwavelength grating metamaterial antenna for silicon waveguides. Photonics North, 1(2022).

    [39] D. Vermeulen, G. Roelkens, Y. De Koninck. Compact grating couplers on silicon-on-insulator with reduced backreflection. Opt. Lett., 37, 4356-4358(2012).

    [40] D. Vermeulen, S. Selvaraja, P. Verheyen. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Opt. Express, 18, 18278-18283(2010).

    [41] D. Benedikovič, Q. Liu, A. Sánchez-Postigo. Circular optical phased array with large steering range and high resolution. Sensors, 22, 6135(2022).

    [42] J. L. Pita, I. Aldaya, P. Dainese. Design of a compact CMOS-compatible photonic antenna by topological optimization. Opt. Express, 26, 2435-2442(2018).

    [43] S. Khajavi, D. Melati, P. Cheben. Highly efficient ultra-broad beam silicon nanophotonic antenna based on near-field phase engineering. Sci. Rep., 12, 18808(2022).

    [44] P. Cheben, S. Janz, D. X. Xu. A broad-band waveguide grating coupler with a subwavelength grating mirror. IEEE Photon. Technol. Lett., 18, 13-15(2006).

    [45] A. Sánchez Postigo, P. Ginel-Moreno, D. Pereira-Martin. Subwavelength-engineered metamaterial devices for integrated photonics. Proc. SPIE, 12005, 120050A(2022).

    [46] P. Cheben, P. J. Bock, J. H. Schmid. Composite subwavelength-structured waveguide in optical systems. U.S. patent(2013).

    [47] R. Halir, A. Ortega-Moñux, D. Benedikovic. Subwavelength-grating metamaterial structures for silicon photonic devices. Proc. IEEE, 106, 2144-2157(2018).

    [48] P. Cheben, D.-X. Xu, S. Janz. Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Opt. Express, 14, 4695-4702(2006).

    [49] P. Cheben, P. J. Bock, J. H. Schmid. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers. Opt. Lett., 35, 2526-2528(2010).

    [50] P. Cheben, R. Halir, J. H. Schmid. Subwavelength integrated photonics. Nature, 560, 565-572(2018).

    [51] S. Khajavi, D. Melati, P. Cheben. Compact and highly-efficient broadband surface grating antenna on a silicon platform. Opt. Express, 29, 7003-7014(2021).

    [52] M. Lipson, R. R. Panepucci, V. R. Almeida. Nanotaper for compact mode conversion. Opt. Lett., 28, 1302-1304(2003).

    [53] B. Frey, D. Leviton, T. J. M. B. Frey. Temperature-dependent refractive index of silicon and germanium. Proc. SPIE, 6273, 62732J(2006).

    [54] S. Zhao, J. Chen, Y. Shi. All-solid-state beam steering via integrated optical phased array technology. Micromachines, 13, 894(2022).

    Shahrzad Khajavi, Jianhao Zhang, Pavel Cheben, Daniele Melati, Jens H. Schmid, Ross Cheriton, Martin Vachon, Shurui Wang, Ahmad Atieh, Carlos Alonso Ramos, Winnie N. Ye, "Experimental demonstration of a silicon nanophotonic antenna for far-field broadened optical phased arrays," Photonics Res. 12, 1954 (2024)
    Download Citation