• Chinese Journal of Lasers
  • Vol. 47, Issue 4, 402012 (2020)
Zhou Peiyang1, Peng Yaozheng1, Huang Zeming1, Ouyang Ziqing1, Long Jiangyou1, and Xie Xiaozhu1、2、3、*
Author Affiliations
  • 1Laser Micro/Nano Processing Lab, School of Electromechanical Engineering,Guangdong University of Technology, Guangzhou, Guangdong 510006, China
  • 2State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School ofElectromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
  • 3Department of Experiment Teaching, Guangdong University of Technology,Guangzhou, Guangdong 510006, China
  • show less
    DOI: 10.3788/CJL202047.0402012 Cite this Article Set citation alerts
    Zhou Peiyang, Peng Yaozheng, Huang Zeming, Ouyang Ziqing, Long Jiangyou, Xie Xiaozhu. Fabrication and Droplet Impact Performance of Superhydrophobic Surfaces Developed Using Nanosecond Lasers[J]. Chinese Journal of Lasers, 2020, 47(4): 402012 Copy Citation Text show less
    References

    [1] Bhushan B, Jung Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction[J]. Progress in Materials Science, 56, 1-108(2011).

    [2] Kota A K, Kwon G, Choi W et al. Hygro-responsive membranes for effective oil-water separation[J]. Nature Communications, 3, 1025(2012).

    [3] Ou J, Perot B, Rothstein J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids, 16, 4635-4643(2004).

    [4] Mishchenko L, Hatton B, Bahadur V et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 4, 7699-7707(2010).

    [5] Long J Y, Wu Y C, Gong D W et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese Journal of Lasers, 42, 0706002(2015).

    [6] Maitra T, Antonini C, Tiwari M K et al. Supercooled water drops impacting superhydrophobic textures[J]. Langmuir, 30, 10855-10861(2014).

    [7] Chen L Q, Xiao Z Y. Chan P C H, et al. A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf[J]. Applied Surface Science, 257, 8857-8863(2011).

    [8] Liu Y H, Andrew M, Li J et al. Symmetry breaking in drop bouncing on curved surfaces[J]. Nature Communications, 6, 10034(2015).

    [9] Bird J C, Dhiman R, Kwon H M et al. Reducing the contact time of a bouncing drop[J]. Nature, 503, 385-388(2013).

    [10] Moradi S, Kamal S, Englezos P et al. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity[J]. Nanotechnology, 24, 415302(2013).

    [11] Farshchian B, Gatabi J R, Bernick S M et al. Scaling and mechanism of droplet array formation on a laser-ablated superhydrophobic grid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 547, 49-55(2018).

    [12] Long J Y, He Z J, Zhou C X et al. Hierarchical micro- and nanostructures induced by nanosecond laser on copper for superhydrophobicity, ultralow water adhesion and frost resistance[J]. Materials & Design, 155, 185-193(2018).

    [13] Long J Y, Cao Z, Lin C H et al. Formation mechanism of hierarchical micro- and nanostructures on copper induced by low-cost nanosecond lasers[J]. Applied Surface Science, 464, 412-421(2019).

    [14] Dausinger F, Helmut H, Konov V I. Micromachining with ultrashort laser pulses: from basic understanding to technical applications[J]. Proceedings of SPIE, 5147, 106-115(2003).

    Zhou Peiyang, Peng Yaozheng, Huang Zeming, Ouyang Ziqing, Long Jiangyou, Xie Xiaozhu. Fabrication and Droplet Impact Performance of Superhydrophobic Surfaces Developed Using Nanosecond Lasers[J]. Chinese Journal of Lasers, 2020, 47(4): 402012
    Download Citation