• High Power Laser and Particle Beams
  • Vol. 34, Issue 12, 126002 (2022)
Miao Qu1、2 and Sha Yan2、*
Author Affiliations
  • 1China Nuclear Strategic Planning Research Institute Co., Ltd., Beijing 100048, China
  • 2Institute of Heavy Ion Physics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.11884/HPLPB202234.220192 Cite this Article
    Miao Qu, Sha Yan. Dependence of tungsten melting and resolidification on pulse parameters under transient heat flow[J]. High Power Laser and Particle Beams, 2022, 34(12): 126002 Copy Citation Text show less
    References

    [1] Li Yu. Thermomechanical behavi of tungsten under fusionrelevant hydrogen plasma loads[D]. Eindhoven: Technische Universiteit Eindhoven, 2021.

    [2] Matera R, Federici G, The ITER Joint Central Team. Design requirements for plasma facing materials in ITER[J]. Journal of Nuclear Materials, 233/237, 17-25(1996).

    [3] Zhang Yang. Research on reliability of EAST divert targets[D]. Hefei: University of Science Technology of China, 2019

    [4] Hassanein A, Sizyuk V. Potential design problems for ITER fusion device[J]. Scientific Reports, 11, 2069(2021).

    [5] Arshad K, Ding Dan, Wang Jun, et al. Surface cracking of tungsten-vanadium alloys under transient heat loads[J]. Nuclear Materials and Energy, 3/4, 32-36(2015).

    [6] Minissale M, Durif A, Kermouche G, et al. Grain growth and damages induced by transient heat loads on W[J]. Physica Scripta, 96, 124032(2021).

    [7] Makhlai V A, Garkusha I E, Herashchenko S S, et al. Contribution of leading edge shape to a damaging of castellated tungsten targets exposed to repetitive QSPA plasma loads[J]. Physica Scripta, 96, 124043(2021).

    [8] Kasatov A A, Arakcheev A S, Burdakov A V, et al. Observation of dust particles ejected from tungsten surface under impact of intense transient heat load[J]. AIP Conference Proceedings, 1771, 060007(2016).

    [9] Ni Mingjiu. Liquid metal hydrodynamics relevant to R&D of magnetocondined fusion reactor[J]. Scientia Sinica Physica, Mechanica & Astronomica, 43, 1570-1578(2013).

    [10] Makhlai V A, Herashchenko S S, Aksenov N N, et al. Damaging of inclined/misaligned castellated tungsten surfces exposed to a large number of repetitive QSPA plasma loads[J]. Physica Scripta, T171, 014047(2020).

    [11] Wittlich K, Hirai T, Compan J, et al. Damage structure in divertor armor materials exposed to multiple ITER relevant ELM loads[J]. Fusion Engineering and Design, 84, 1982-1986(2009).

    [12] Bazylev B, Janeschitz G, Landman I, et al. Behaviour of melted tungsten plasma facing components under ITER-like transient heat loads: simulations and experiments[J]. Fusion Engineering and Design, 83, 1077-1081(2008).

    [13] Budaev V P, Martynenko Y V, Karpov A V, et al. Tungsten recrystallization and cracking under ITER-relevant heat loads[J]. Journal of Nuclear Materials, 463, 237-240(2015).

    [14] Garkusha I E, Bandura A N, Byrka O V, et al. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs[J]. Journal of Nuclear Materials, 386/388, 127-131(2009).

    [15] Kudaktsin R S, Astashynski V M, Kuzmitski A M. Characteristic features of the surface relief formation of metals modified by compression plasma flows[J]. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 23, 275-282(2019).

    [16] Shymanski V I, Uglov V V, Cherenda N N, et al. Structure and phase composition of tungsten alloys modified by compression plasma flows and high-intense pulsed ion beam impacts[J]. Applied Surface Science, 491, 43-52(2019).

    [17] Qu Miao, Kong Fanhang, Yan Sha, et al. Damages on pure tungsten irradiated by compression plasma flows[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 444, 33-37(2019).

    [18] Li Changjun, Zhu Dahuan, Li Xiangbin, et al. Performance of W-1%Y2O3-0.5%Ti plasma-facing composite under fusion relevant transient heat flux[J]. Fusion Science and Technology, 77, 310-315(2021).

    [19] Lian Youyun, Liu Xiang, Cheng Zhengkui, et al. Thermal shock performance of CVD tungsten coating at elevated temperatures[J]. Journal of Nuclear Materials, 455, 371-375(2014).

    [20] Peng Guangwei, Liu Jian, Li Li, . Progress of technic and theory of directional solidification[J]. Research Studies on Foundry Equipment, 44-47(2005).

    [21] Ding Guolu, Huang Weidong, Lin Xin, . Critical conditions for high gradient absolute stability of directional and solidification interfaces[J]. Progress in Natural Science: Communication of State Key Laboratories of China, 6, 602-607(1996).

    [22] Huang S C, Laforce R P, Ritter A M, et al. Rapid solidification characteristics in melt spinning a Ni-base superalloy[J]. Metallurgical Transactions A, 16, 1773-1779(1985).

    [23] Kurz W, Trivedi R. Overview No. 87 Solidification microstructures: recent developments and future directions[J]. Acta Metallurgica et Materialia, 38, 1-17(1990).

    [24] Yang Yang, Xu Jinfeng, Zhai Qiuya. Rapid dendritic growth in melt-spun Cu−Sn alloys[J]. The Chinese Journal of Nonferrous Metals, 17, 1521-1526(2007).

    [25] Wang Gang, An Lin. Engineering practice theetical simulation in COMSOL Multiphysics: multi physical field numerical analysis technology[M]. Beijing: Publishing House of Electronics Industry, 2012: 2425

    Miao Qu, Sha Yan. Dependence of tungsten melting and resolidification on pulse parameters under transient heat flow[J]. High Power Laser and Particle Beams, 2022, 34(12): 126002
    Download Citation