• Photonics Research
  • Vol. 8, Issue 3, 279 (2020)
Lei Hu1、2, Xiaoyu Ren1, Jianping Liu1、2、*, Aiqin Tian1, Lingrong Jiang1、2, Siyi Huang1, Wei Zhou1, Liqun Zhang1, and Hui Yang1、2
Author Affiliations
  • 1Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
  • 2School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.1364/PRJ.381262 Cite this Article Set citation alerts
    Lei Hu, Xiaoyu Ren, Jianping Liu, Aiqin Tian, Lingrong Jiang, Siyi Huang, Wei Zhou, Liqun Zhang, Hui Yang. High-power hybrid GaN-based green laser diodes with ITO cladding layer[J]. Photonics Research, 2020, 8(3): 279 Copy Citation Text show less
    References

    [1] S. Nakamura. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science, 281, 956-961(1998).

    [2] F. A. Ponce, D. P. Bour. Nitride-based semiconductors for blue and green light-emitting devices. Nature, 386, 351-359(1997).

    [3] T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, T. Mukai. 510–515 nm InGaN-based green laser diodes on c-plane GaN substrate. Appl. Phys. Express, 2, 062201(2009).

    [4] U. Strauss, A. Somers, U. Heine, T. Wurm, M. Peter, C. Eichler, S. Gerhard, G. Bruederl, S. Tautz, B. Stojetz, A. Loeffler, H. Koenig. GaInN laser diodes from 440 to 530  nm: a performance study on single mode and multi-mode R&D designs. Proc. SPIE, 10123, 101230A(2017).

    [5] S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, M. Ikeda. High-power (over 100  mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530  nm. Appl. Phys. Express, 5, 082102(2012).

    [6] S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, S. Nakamura. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Mater., 61, 945-951(2013).

    [7] A. Avramescu, T. Lermer, J. Müller, S. Tautz, D. Queren, S. Lutgen, U. Strauß. InGaN laser diodes with 50  mW output power emitting at 515  nm. Appl. Phys. Lett., 95, 071103(2009).

    [8] J. P. Liu, L. Q. Zhang, D. Y. Li, K. Zhou, Y. Cheng, W. Zhou, A. Q. Tian, M. Ikeda, S. M. Zhang, H. Yang. GaN-based blue laser diodes with 2.2  W of light output power under continuous-wave operation. IEEE Photonics Technol. Lett., 29, 2203-2206(2017).

    [9] A. Q. Tian, J. P. Liu, L. Q. Zhang, Z. C. Li, M. Ikeda, S. M. Zhang, D. Y. Li, P. Y. Wen, F. Zhang, Y. Cheng, X. W. Fan, H. Yang. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region. Opt. Express, 25, 415-421(2017).

    [10] Y. Sun, K. Zhou, M. X. Feng, Z. C. Li, Y. Zhou, Q. Sun, J. P. Liu, L. Q. Zhang, D. Y. Li, X. J. Sun, D. B. Li, S. M. Zhang, M. Ikeda, H. Yang. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light Sci. Appl., 7, 13(2018).

    [11] A. Q. Tian, J. P. Liu, L. Q. Zhang, L. R. Jiang, M. Ikeda, S. M. Zhang, D. Y. Li, P. Y. Wen, Y. Cheng, X. W. Fan, H. Yang. Significant increase of quantum efficiency of green InGaN quantum well by realizing step-flow growth. Appl. Phys. Lett., 111, 112102(2017).

    [12] L. R. Jiang, J. P. Liu, A. Q. Tian, Y. Cheng, Z. C. Li, L. Q. Zhang, S. M. Zhang, D. Y. Li, M. Ikeda, H. Yang. GaN-based green laser diodes. J. Semicond., 37, 111001(2016).

    [13] J. J. Wierer, J. Y. Tsao, D. S. Sizov. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photonics Rev., 7, 963-993(2013).

    [14] Y. Shimada, Y. Chida, N. Ohtsubo, T. Aoki, M. Takeuchi, T. Kuga, Y. Torii. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr. Rev. Sci. Instrum., 84, 063101(2013).

    [15] P. H. Moriya, M. O. Araújo, F. Todão, M. Hemmerling, H. Keßler, R. F. Shiozaki, R. C. Teixerira, P. W. Courteille. Comparison between 403  nm and 497  nm repumping schemes for strontium magneto-optical traps. J. Phys. Commun., 2, 125008(2018).

    [16] S. Fujita. Wide-bandgap semiconductor materials: for their full bloom. Jpn. J. Appl. Phys., 54, 030101(2015).

    [17] M. A. Haase, J. Qiu, J. M. DePuydt, H. Cheng. Blue-green laser diodes. Appl. Phys. Lett., 59, 1272-1274(1991).

    [18] Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, H. C. Kuo. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’. Light Sci. Appl., 6, e16199(2016).

    [19] R. B. Xu, Y. Mei, H. Xu, L. Y. Ying, Z. Zheng, H. Long, D. Zhang, B. P. Zhang, J. P. Liu. Green vertical-cavity surface-emitting lasers based on combination of blue-emitting quantum wells and cavity-enhanced recombination. IEEE Trans. Electron Devices, 65, 4401-4406(2018).

    [20] C. P. Massabuau, M. J. Davies, F. Oehler, S. K. Pamenter, E. J. Thrush, M. J. Kappers, A. Kovács, T. Williams, M. A. Hopkins, C. J. Humphreys, P. Dawson, R. E. Dunin-Borkowski, J. Etheridge, D. W. E. Allsopp, R. A. Oliver. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem. Appl. Phys. Lett., 105, 112110(2014).

    [21] U. Strauß, A. Avramescu, T. Lermer, D. Queren, A. Gomez-Iglesias, C. Eichler, J. Muller, G. Brüderl, S. Lutgen. Pros and cons of green InGaN laser on c-plane GaN. Phys. Status Solidi B, 248, 652-657(2011).

    [22] S. Nagahama, T. Yanamoto, M. Sano, T. Mukai. Wavelength dependence of InGaN laser diode characteristics. Jpn. J. Appl. Phys., 40, 3075-3081(2001).

    [23] D. Queren, A. Avramescu, M. Schillgalies, M. Peter, T. Meyer, G. Brüderl, S. Lutgen, U. Strauß. Epitaxial design of 475  nm InGaN laser diodes with reduced wavelength shift. Phys. Status Solidi C, 6, S826-S829(2009).

    [24] Z. C. Li, J. P. Liu, M. X. Feng, K. Zhou, S. M. Zhang, H. Wang, D. Y. Li, L. Q. Zhang, D. G. Zhao, D. S. Jiang, H. B. Wang, H. Yang. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth. Appl. Phys. Lett., 103, 152109(2013).

    [25] J. P. Liu, Z. C. Li, L. Q. Zhang, F. Zhang, A. Q. Tian, K. Zhou, D. Y. Li, S. M. Zhang, H. Yang. Realization of InGaN laser diodes above 500  nm by growth optimization of the InGaN/GaN active region. Appl. Phys. Express, 7, 111001(2014).

    [26] D. Bour, C. Chua, Z. H. Yang, M. Teepe, N. Johnson. Silver-clad nitride semiconductor laser diode. Appl. Phys. Lett., 94, 041124(2009).

    [27] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, L. A. Coldren. Indium tin oxide contacts to gallium nitride optoelectronic devices. Appl. Phys. Lett., 74, 3930-3932(1999).

    [28] H. Y. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç. Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct., 48, 458-484(2010).

    [29] A. Myzaferi, A. H. Reading, D. A. Cohen, M. Farrell, S. Nakamura, J. S. Speck, S. P. DenBaars. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes. Appl. Phys. Lett., 109, 061109(2016).

    [30] S. Mehari, D. A. Cohen, D. L. Becerra, S. Nakamura, S. P. Dnbaars. Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 2021 GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers. Opt. Express, 26, 1564-1572(2018).

    [31] J. Chilwell, I. Hodgkinson. Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J. Opt. Soc. Am. A, 1, 742-753(1984).

    [32] G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, D. Somerford. Improved refractive index formulas for the AlxGa1−xN and InyGa1−yN alloys. J. Appl. Phys., 89, 1108-1115(2001).

    [33] L. Q. Zhang, D. S. Jiang, J. J. Zhu, D. G. Zhao, Z. S. Liu, S. M. Zhang, H. Yang. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green. J. Appl. Phys., 105, 023104(2009).

    [34] M. Kuc, Ł. Piskorski, A. K. Sokół, M. Dems, M. Wasiak, R. P. Sarzała, T. Czyszanowski. Optical simulations of blue and green semipolar InGaN/GaN lasers. Proc. SPIE, 10532, 1053228(2019).

    [35] S. Boycheva, A. K. Sytchkova, A. Piegari. Optical and electrical characterization of r.f. sputtered ITO films developed as art protection coatings. Thin Solid Films, 515, 8474-8478(2007).

    [36] A. J. Wen, K. L. Chen, M. H. Yang, W. T. Hsiao, L. G. Chao, M. S. Leu. Effect of substrate angle on properties of ITO films deposited by cathodic arc ion plating with In-Sn alloy target. Surf. Coat. Technol., 198, 362-366(2005).

    [37] M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, S. P. DenBaars. Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes. Appl. Phys. Lett., 103, 081103(2013).

    [38] J. L. Chen, W. D. Brewer. Ohmic contacts on p-GaN. Adv. Electron. Mater., 1, 1500113(2015).

    [39] J. S. Jang, T. Y. Seong. Low-resistance and thermally stable indium tin oxide ohmic contacts on strained p-In0.15Ga0.85N/p-GaN layer. J. Appl. Phys., 101, 013711(2007).

    [40] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, B. Hahn. A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes. J. Appl. Phys., 106, 114508(2009).

    [41] D. Queren, M. Schillgalies, A. Avramescu, G. Brüderl, A. Laubsch, S. Lutgen, U. Strauß. Quality and thermal stability of thin InGaN films. J. Cryst. Growth, 311, 2933-2936(2009).

    [42] J. Li, T. N. Oder, M. L. Nakarmi, J. Y. Lin, H. X. Jiang. Optical and electrical properties of Mg-doped p-type AlxGa1−xN. Appl. Phys. Lett., 80, 1210-1212(2002).

    [43] A. Q. Tian, J. P. Liu, M. Ikeda, S. M. Zhang, Z. C. Li, M. X. Feng, K. Zhou, D. Y. Li, L. Q. Zhang, P. Y. Wen, F. Zhang, H. Yang. Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity. Appl. Phys. Express, 8, 051001(2015).

    [44] G. Parish, S. Keller, S. P. Denbaars, U. K. Mishra. SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1−xN. J. Electron. Mater., 29, 15-20(2000).

    CLP Journals

    [1] Lingrong Jiang, Jianping Liu, Lei Hu, Liqun Zhang, Aiqin Tian, Wei Xiong, Xiaoyu Ren, Siyi Huang, Wei Zhou, Masao Ikeda, Hui Yang. Reduced threshold current density of GaN-based green laser diode by applying polarization doping p-cladding layer[J]. Chinese Optics Letters, 2021, 19(12): 121404

    Lei Hu, Xiaoyu Ren, Jianping Liu, Aiqin Tian, Lingrong Jiang, Siyi Huang, Wei Zhou, Liqun Zhang, Hui Yang. High-power hybrid GaN-based green laser diodes with ITO cladding layer[J]. Photonics Research, 2020, 8(3): 279
    Download Citation