• Journal of Atmospheric and Environmental Optics
  • Vol. 19, Issue 4, 391 (2024)
WANG Yu1,2, WANG Guishi1,2,*, LI Jun1,2, ZHANG Xianke1,2, and GAO Xiaoming1,2
Author Affiliations
  • 1Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS,Chinese Academy of Sciences, Hefei 230031, China
  • 2University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.3969/j.issn.1673-6141.2024.04.001 Cite this Article
    Yu WANG, Guishi WANG, Jun LI, Xianke ZHANG, Xiaoming GAO. Research progress of measuring ammonia emission using infrared spectroscopy[J]. Journal of Atmospheric and Environmental Optics, 2024, 19(4): 391 Copy Citation Text show less
    The mid-infrared sensor platform based on amplitude modulated photo-acoustic spectroscopy for atmospheric NH3 detection[24]
    Fig. 1. The mid-infrared sensor platform based on amplitude modulated photo-acoustic spectroscopy for atmospheric NH3 detection[24]
    Schematic diagram of laser control and signal processing part (a) and open path and closed path (b) for atmospheric trace gas measurement system [26]
    Fig. 2. Schematic diagram of laser control and signal processing part (a) and open path and closed path (b) for atmospheric trace gas measurement system [26]
    Diagram of optical design entity (a) and complete structure fully non-cryogenic of the instrument (b) for NH3 measurement[27]
    Fig. 3. Diagram of optical design entity (a) and complete structure fully non-cryogenic of the instrument (b) for NH3 measurement[27]
    System construction of long range NH3 online spectral detection system[30]
    Fig. 4. System construction of long range NH3 online spectral detection system[30]
    The bLS method for estimating tracer emission rate (QbLS)[30]
    Fig. 5. The bLS method for estimating tracer emission rate (QbLS)[30]
    Locations of experimental pen and instruments in this study[17]
    Fig. 6. Locations of experimental pen and instruments in this study[17]

    技术

    原理

    特点及适应范围参考文献

    有效

    光程

    波段测量周期探测极限
    FTIR

    可以同时测量多种气体, 采用开放光路设计,

    可以测量同时测量点源和面源;

    价格昂贵, 仪器体积较大, 响应时间较慢。

    [12]2 km1034-1074 cm-11 × 10-6
    [13]96 m1350 cm-120 min8 × 10-9
    [15]250 m950 nm1× 10-9
    [16]900-1000 cm-1> 6 s7 × 10-9
    [17]100 m950 nm0.04 × 10-9
    PAS

    探测限低, 适用于点源测量;

    需采样, 易吸附, 存在干扰;

    较难同时保证高的探测灵敏度和快的响应时间;

    需要对腔进行高精度的压力控制。

    [19]1.53 μm> 1 s0.65 × 10-6
    [21]1531.7 nm60 s8 × 10-9
    [22]1532 nm95 s6 × 10-9
    [23]1531.7 nm60 s3 × 10-9
    [24]1040 nm300 s1 × 10-9
    TDLAS

    响应迅速, 适应于点源和面源在线测量;

    探测灵敏度不够高;

    采用谐波调制时要用到样气标定会引入吸附误差。

    [8]10 m1500 nm> 10 s0.054 × 10-6
    [26]210 m10.36 μm1 s0.05 × 10-9
    [27]76 m10.34 μm1 s0.02 × 10-9
    [28]76 m10.34 μm1 s0.23 × 10-9
    [29]9062 nm0.05 s
    [30]24.32 m1531.7 nm> 9 s0.048 × 10-6
    [31]6568.4 cm-11 × 10-9
    [32]1.6 × 104 m6521.97 cm-11 min0.39 × 10-9
    Table 1. Summary of NH3 optical measurement technologies
    Yu WANG, Guishi WANG, Jun LI, Xianke ZHANG, Xiaoming GAO. Research progress of measuring ammonia emission using infrared spectroscopy[J]. Journal of Atmospheric and Environmental Optics, 2024, 19(4): 391
    Download Citation