[3] LIU D Q, ZHANG A J, JIA J G, et al. Phase evolution and properties of (VNbTaMoW)C high entropy carbide prepared by reaction synthesis[J]. J Eur Ceram Soc, 2020, 40(8): 2746-2751.
[4] ZHOU S Y, PU Y P, ZHANG Q W, et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides[J]. Ceram Int, 2020, 46(6): 7430-7437.
[5] WRIGHT A J, WANG Q Y, KO S T, et al. Size disorder as a descriptor for predicting reduced thermal conductivity in medium-and high-entropy pyrochlore oxides[J]. Scripta Mater, 2020, 181: 76-81.
[6] SUN Y N, XIANG H M, DAI F Z, et al. Preparation and properties of CMAS resistant bixbyite structured high-entropy oxides RE2O3 (RE = Sm, Eu, Er, Lu, Y, and Yb): Promising environmental barrier coating materials for Al2O3f/Al2O3 composites[J]. J Adv Ceram, 2021, 10(3): 596-613.
[7] MOSKOVSKIKH D, VOROTILO S, BUINEVICH V, et al. Extremely hard and tough high entropy nitride ceramics[J]. Sci Rep-Uk, 2020, 10(1): 19874.
[8] CHEN T K, SHUN T T, YEH J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J]. Surf Coat Tech, 2004, 188: 193-200.
[9] GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Sci Rep-Uk, 2016, 6(1): 37946.
[10] TALLARITA G, LICHERI R, GARRONI S, et al. Novel processing route for the fabrication of bulk high-entropy metal diborides[J]. Scripta Mater, 2019, 158: 100-104.
[11] LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics[J]. J Adv Ceram, 2020, 9(4): 503-510.
[12] YAN X L, CONSTANTIN L, LU Y F, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. J Am Ceram Soc, 2018, 101(10): 4486-4491.
[13] ZHOU J Y, ZHANG J Y, ZHANG F, et al. High-entropy carbide: A novel class of multicomponent ceramics[J]. Ceram Int, 2018, 44(17): 22014-22018.
[14] CASTLE E, CSANADI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Sci Rep-Uk, 2018, 8(1): 8609.
[15] XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward[J]. J Adv Ceram, 2021, 10(3): 385-441.
[16] SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors[J]. Nat Commun, 2018, 9(1): 4980.
[17] WANG F, ZHANG X, YAN X L, et al. The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbide ceramics[J]. J Am Ceram Soc, 2020, 103(8): 4463-4472.
[18] CHEN H, XIANG H M, DAI F Z, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C[J]. J Mater Sci Technol, 2019, 35(8): 1700-1705.
[19] WEI X F, LIU J X, LI F, et al. High entropy carbide ceramics from different starting materials[J]. J Eur Ceram Soc, 2019, 39(10): 2989-2994.
[20] SUN Y N, CHEN F H, QIU W F, et al. Synthesis of rare earth containing single-phase multicomponent metal carbides via liquid polymer precursor route[J]. J Am Ceram Soc, 2020, 103(11): 6081-6087.
[21] YE B L, WEN T Q, HUANG K H, et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic[J]. J Am Ceram Soc, 2019, 102(7): 4344-4352.
[22] DEMIRSKYI D, BORODIANSKA H, SUZUKI T S, et al. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC[J]. Scripta Mater, 2019, 164: 12-16.
[23] YE B L, WEN T Q, LIU D, et al. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air[J]. Corros Sci, 2019, 153: 327-332.
[24] YANG Y, WANG W, GAN G Y, et al. Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: Ab initio investigation[J]. Physica B, 2018, 550: 163-170.
[25] SUN Q C, TAN H, ZHU S Y, et al. Single-phase (Hf—Mo—Nb—Ta—Ti)C high-entropy ceramic: A potential high temperature anti-wear material[J]. Tribol Int, 2021, 157.
[26] CHEN H, WU Z H, LIU M L, et al. Synthesis, microstructure and mechanical properties of high-entropy (VNbTaMoW)C5 ceramics[J]. J Eur Ceram Soc, 2021, 41(15): 7498-7506.
[27] ZHANG H, HEDMAN D, FENG P, et al. A high-entropy B4(HfMo2TaTi)C and SiC ceramic composite[J]. Dalton T, 2019, 48(16): 5161-5167.
[28] YU X X, THOMPSON G B, WEINBERGER C R. Influence of carbon vacancy formation on the elastic constants and hardening mechanisms in transition metal carbides[J]. J Eur Ceram Soc, 2015, 35(1): 95-103.
[29] BURR P A, OLIVER S X. Formation and migration of point defects in tungsten carbide: Unveiling the sluggish bulk self-diffusivity of WC[J]. J Eur Ceram Soc, 2019, 39(2-3): 165-172.
[30] FANG Y, ZHANG Y S, FAN H Z, et al. Surface composition- lubrication design of Al2O3/Mo laminated composites-Part I: Influence of laser surface texturing on the tribological behavior at 25 and 800 degrees C[J]. Wear, 2015, 334: 23-34.