• Opto-Electronic Science
  • Vol. 2, Issue 4, 220023 (2023)
Zhuoshi Li, Jiasong Sun, Yao Fan, Yanbo Jin..., Qian Shen, Maciej Trusiak, Maria Cywińska, Peng Gao*, Qian Chen** and Chao Zuo***|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.29026/oes.2023.220023 Cite this Article
    Zhuoshi Li, Jiasong Sun, Yao Fan, Yanbo Jin, Qian Shen, Maciej Trusiak, Maria Cywińska, Peng Gao, Qian Chen, Chao Zuo. Deep learning assisted variational Hilbert quantitative phase imaging[J]. Opto-Electronic Science, 2023, 2(4): 220023 Copy Citation Text show less
    References

    [1] Y Fan, JJ Li, LP Lu, JS Sun, Y Hu et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab). PhotoniX, 2, 19(2021).

    [2] K Lee, K Kim, J Jung, J Heo, S Cho et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors, 13, 4170-4191(2013).

    [3] Y Park, C Depeursinge, G Popescu. Quantitative phase imaging in biomedicine. Nat Photonics, 12, 578-589(2018).

    [4] T Vicar, J Balvan, J Jaros, F Jug, R Kolar et al. Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison. BMC Bioinformatics, 20, 360(2019).

    [5] P Gao, R Wirth, J Lackner, M Sunbul, A Jaeschke et al. Superresolution imaging of live cells with genetically encoded silicon rhodamine-binding RNA aptamers. Biophys J, 118, 145A(2020).

    [6] ZS Li, Y Fan, JS Sun, C Zuo, Q Chen. A commercialized digital holographic microscope with complete software supporting. Proc SPIE, 11571, 115711C(2020).

    [7] MK Kim. Principles and techniques of digital holographic microscopy. SPIE Rev, 1, 018005(2010).

    [8] B Kemper, G von Bally. Digital holographic microscopy for live cell applications and technical inspection. Appl Opt, 47, A52-A61(2008).

    [9] P Gao, CJ Yuan. Resolution enhancement of digital holographic microscopy via synthetic aperture: a review. Light Adv Manuf, 3, 105-120(2022).

    [10] D Bettenworth, P Lenz, P Krausewitz, M Brückner, S Ketelhut et al. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy. PLoS One, 9, e107317(2014).

    [11] G Coppola, P Ferraro, M Iodice, S De Nicola, A Finizio et al. A digital holographic microscope for complete characterization of microelectromechanical systems. Meas Sci Technol, 15, 529-539(2004).

    [12] V Anand, ML Han, J Maksimovic, SH Ng, T Katkus et al. Single-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm. Opto-Electron Sci, 1, 210006(2022).

    [13] K Xu, E Wang X, H Fan X et al. Meta-holography: from concept to realization. Opto-Electron Eng, 49, 220183(2022).

    [14] H Gao, XH Fan, W Xiong, MH Hong. Recent advances in optical dynamic meta-holography. Opto-Electron Adv, 4, 210030(2021).

    [15] H Gabai, M Baranes-Zeevi, M Zilberman, NT Shaked. Continuous wide-field characterization of drug release from skin substitute using off-axis interferometry. Opt Lett, 38, 3017-3020(2013).

    [16] ZZ Huang, P Memmolo, P Ferraro, LC Cao. Dual-plane coupled phase retrieval for non-prior holographic imaging. PhotoniX, 3, 3(2022).

    [17] XJ Wu, JS Sun, JL Zhang, LP Lu, R Chen et al. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging. Opt Lett, 46, 2023-2026(2021).

    [18] HD Wang, Z Göröcs, W Luo, YB Zhang, Y Rivenson et al. Computational out-of-focus imaging increases the space–bandwidth product in lens-based coherent microscopy. Optica, 3, 1422-1429(2016).

    [19] V Micó, J García, Z Zalevsky, B Javidi. Phase-shifting Gabor holography. Opt Lett, 34, 1492-1494(2009).

    [20] TC Poon. DigitalHolographyandThree-DimensionalDisplay: PrinciplesandApplications(2006).

    [21] D Claus, D Iliescu, P Bryanston-Cross. Quantitative space-bandwidth product analysis in digital holography. Appl Opt, 50, H116-H127(2011).

    [22] Z Zhong, HY Bai, MG Shan, YB Zhang, LL Guo. Fast phase retrieval in slightly off-axis digital holography. Opt Lasers Eng, 97, 9-18(2017).

    [23] L Xue, JC Lai, SY Wang, ZH Li. Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells. Biomed Opt Express, 2, 987-995(2011).

    [24] NT Shaked, YZ Zhu, MT Rinehart, A Wax. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells. Opt Express, 17, 15585-15591(2009).

    [25] N Pavillon, C Arfire, I Bergoënd, C Depeursinge. Iterative method for zero-order suppression in off-axis digital holography. Opt Express, 18, 15318-15331(2010).

    [26] M Trusiak, JA Picazo-Bueno, K Patorski, P Zdankowski, V Mico. Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy. J Biomed Opt, 24, 096004(2019).

    [27] M León-Rodríguez, JA Rayas, RR Cordero, A Martínez-García, A Martínez-Gonzalez et al. Dual-plane slightly off-axis digital holography based on a single cube beam splitter. Appl Opt, 57, 2727-2735(2018).

    [28] JH Han, P Gao, BL Yao, YZ Gu, MJ Huang. Slightly off-axis interferometry for microscopy with second wavelength assistance. Appl Opt, 50, 2793-2798(2011).

    [29] T Ikeda, G Popescu, RR Dasari, MS Feld. Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt Lett, 30, 1165-1167(2005).

    [30] CS Guo, BY Wang, B Sha, YJ Lu, MY Xu. Phase derivative method for reconstruction of slightly off-axis digital holograms. Opt Express, 22, 30553-30558(2014).

    [31] N Pavillon, CS Seelamantula, J Kühn, M Unser, C Depeursinge. Suppression of the zero-order term in off-axis digital holography through nonlinear filtering. Appl Opt, 48, H186-H195(2009).

    [32] Y Baek, K Lee, S Shin, Y Park. Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica, 6, 45-51(2019).

    [33] Y Baek, Y Park. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat Photonics, 15, 354-360(2021).

    [34] M Trusiak, M Cywińska, V Micó, JÁ Picazo-Bueno, C Zuo et al. Variational Hilbert quantitative phase imaging. Sci Rep, 10, 13955(2020).

    [35] M Cywińska, M Trusiak, K Patorski. Automatized fringe pattern preprocessing using unsupervised variational image decomposition. Opt Express, 27, 22542-22562(2019).

    [36] KG Larkin, DJ Bone, MA Oldfield. Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. J Opt Soc Am A, 18, 1862-1870(2001).

    [37] C Zuo, JM Qian, SJ Feng, W Yin, YX Li et al. Deep learning in optical metrology: a review. Light Sci Appl, 11, 39(2022).

    [38] SJ Feng, Q Chen, GH Gu, TY Tao, L Zhang et al. Fringe pattern analysis using deep learning. Adv Photonics, 1, 025001(2019).

    [39] SJ Feng, C Zuo, Y Hu, YX Li, Q Chen. Deep-learning-based fringe-pattern analysis with uncertainty estimation. Optica, 8, 1507-1510(2021).

    [40] M Cywińska, F Brzeski, W Krajnik, K Patorski, C Zuo et al. DeepDensity: convolutional neural network based estimation of local fringe pattern density. Opt Lasers Eng, 145, 106675(2021).

    [41] B Pan. Optical metrology embraces deep learning: keeping an open mind. Light Sci Appl, 11, 139(2022).

    [42] C Zuo, JM Qian, SJ Feng, W Yin, YX Li et al. Correction: deep learning in optical metrology: a review. Light Sci Appl, 11, 74(2022).

    [43] SJ Feng, C Zuo, L Zhang, W Yin, Q Chen. Generalized framework for non-sinusoidal fringe analysis using deep learning. Photonics Res, 9, 1084-1098(2021).

    [44] YX Li, JM Qian, SJ Feng, Q Chen, C Zuo. Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement. Opto-Electron Adv, 5, 210021(2022).

    [45] CH Zheng, TS Wang, ZQ Liu et al. Deep transfer learning method to identify orbital angular momentum beams. Opto-Electron Eng, 49, 210409(2022).

    [46] ZH Zheng, SK Zhu, Y Chen, HY Chen, JH Chen. Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electron Sci, 1, 220012(2022).

    [47] Y Rivenson, YB Zhang, H Günaydın, D Teng, A Ozcan. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci Appl, 7, 17141(2018).

    [48] Y Rivenson, YC Wu, A Ozcan. Deep learning in holography and coherent imaging. Light Sci Appl, 8, 85(2019).

    [49] HL Chen, LZ Huang, TR Liu, A Ozcan. Fourier Imager Network (FIN): a deep neural network for hologram reconstruction with superior external generalization. Light Sci Appl, 11, 254(2022).

    [50] V Lempitsky, A Vedaldi, D. Ulyanov. Deep image prior(2018). http://doi.org/10.1109/CVPR.2018.00984

    [51] F Wang, YM Bian, HC Wang, M Lyu, G Pedrini et al. Phase imaging with an untrained neural network. Light Sci Appl, 9, 77(2020).

    [52] J Duran, B Coll, C Sbert. Chambolle’s projection algorithm for total variation denoising. Image Process Line, 3, 311-331(2013).

    [53] XJ Zhu, ZQ Chen, C Tang. Variational image decomposition for automatic background and noise removal of fringe patterns. Opt Lett, 38, 275-277(2013).

    [54] V Bianco, P Memmolo, M Paturzo, A Finizio, B Javidi et al. Quasi noise-free digital holography. Light Sci Appl, 5, e16142(2016).

    [55] JW Kluver. Elimination of slip and instability effects in certain M-type electron beams. Proc IEEE, 51, 868-868(1963).

    [56] X Yang, QF Yu, SH Fu. A combined method for obtaining fringe orientations of ESPI. Opt Commun, 273, 60-66(2007).

    [57] M Deng, S Li, ZY Zhang, I Kang, NX Fang et al. On the interplay between physical and content priors in deep learning for computational imaging. Opt Express, 28, 24152-24170(2020).

    [58] CE Shannon. A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun Rev, 5, 3-55(2001).

    [59] TM Cover. ElementsofInformationTheory(1999).

    [60] S Ioffe, C. Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift(2015).

    [61] V Nair, GE Hinton. Rectified linear units improve restricted Boltzmann machines(2010).

    [62] DP Kingma, J. Ba. Adam: a method for stochastic optimization(2015). https://arxiv.org/abs/1412.6980

    [63] W Choi, C Fang-Yen, S Oh, N Lue, RR Dasari et al. Tomographic phase microscopy: quantitative 3D-mapping of refractive index in live cells. Imaging Microsc, 10, 48-50(2008).

    [64] Y Sung, W Choi, C Fang-Yen, K Badizadegan, RR Dasari et al. Optical diffraction tomography for high resolution live cell imaging. Opt Express, 17, 266-277(2009).

    [65] JJ Li, AC Matlock, YZ Li, Q Chen, C Zuo et al. High-speed in vitro intensity diffraction tomography. Adv Photonics, 1, 066004(2019).

    [66] V Mico, Z Zalevsky, J García. Superresolution optical system by common-path interferometry. Opt Express, 14, 5168-5177(2006).

    [67] JW Zhang, SQ Dai, CJ Ma, TL Xi, JL Di et al. A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing. Light Adv Manuf, 2, 333-349(2021).

    Zhuoshi Li, Jiasong Sun, Yao Fan, Yanbo Jin, Qian Shen, Maciej Trusiak, Maria Cywińska, Peng Gao, Qian Chen, Chao Zuo. Deep learning assisted variational Hilbert quantitative phase imaging[J]. Opto-Electronic Science, 2023, 2(4): 220023
    Download Citation