• Photonics Research
  • Vol. 8, Issue 10, 1573 (2020)
Li Long, Jianfeng Chen, Huakang Yu, and Zhi-Yuan Li*
Author Affiliations
  • School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
  • show less
    DOI: 10.1364/PRJ.398243 Cite this Article Set citation alerts
    Li Long, Jianfeng Chen, Huakang Yu, Zhi-Yuan Li, "Strong optical force of a molecule enabled by the plasmonic nanogap hot spot in a tip-enhanced Raman spectroscopy system," Photonics Res. 8, 1573 (2020) Copy Citation Text show less
    References

    [1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [2] M. L. Juan, M. Righini, R. Quidant. Plasmon nano-optical tweezers. Nat. Photonics, 5, 349-356(2011).

    [3] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [4] V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature, 419, 145-147(2002).

    [5] L. Jing, L. Zhiyuan. Controlled mechanical motions of microparticles in optical tweezers. Micromachines, 9, 232(2018).

    [6] H. L. Guo, Z. Y. Li. Optical tweezers technique and its applications. Sci. China Phys. Mech. Astron., 56, 2351-2360(2013).

    [7] A. Ashkin. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Electron., 6, 841-856(2000).

    [8] M. Born, E. Wolf. Principles of Optics(1975).

    [9] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [10] F. Svedberg, Z. Li, H. Xu, M. Käll. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett., 6, 2639-2641(2006).

    [11] S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, D. Petrov. Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl. Phys. Lett., 96, 213701(2010).

    [12] G. Volpe, R. Quidant, G. Badenes, D. Petrov. Surface plasmon radiation forces. Phys. Rev. Lett., 96, 238101(2006).

    [13] M. Righini, A. S. Zelenina, C. Girard, R. Quidant. Parallel and selective trapping in a patterned plasmonic landscape. Nat. Phys., 3, 477-480(2007).

    [14] M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett., 100, 186804(2008).

    [15] R. Quidant, C. Girard. Surface-plasmon-based optical manipulation. Laser Photonics Rev., 2, 47-57(2008).

    [16] K. Wang, E. Schonbrun, K. B. Crozier. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film. Nano Lett., 9, 2623-2629(2009).

    [17] W. Zhang, L. Huang, C. Santschi, O. J. F. Martin. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett., 10, 1006-1011(2010).

    [18] M. L. Juan, M. Righini, R. Quidant. Plasmon nano-optical tweezers. Nat. Photonics, 5, 349-356(2011).

    [19] B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, K. C. Toussaint. Application of plasmonic Bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett., 12, 796-801(2012).

    [20] C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, X. Yuan. Focused plasmonic trapping of metallic particles. Nat. Commun., 4, 2891(2013).

    [21] Z. Y. Li. Mesoscopic and microscopic strategies for engineering plasmon-enhanced Raman scattering. Adv. Opt. Mater., 6, 1701097(2018).

    [22] J. F. Li, J. Liu, X. M. Tian, Z. Y. Li. Plasmonic particles with unique optical interaction and mechanical motion properties. Part. Part. Syst. Charact., 34, 1600380(2017).

    [23] C. Zhang, B. Q. Chen, Z. Y. Li. Optical origin of subnanometer resolution in tip-enhanced raman mapping. J. Phys. Chem. C, 119, 11858-11871(2015).

    [24] R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, J. G. Hou. Sub-nm chemical mapping of a single molecule by plasmon enhanced Raman scattering. Nature, 498, 82-86(2013).

    [25] L. Joonhee, K. T. Crampton, N. Tallarida, V. A. Apkarian. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature, 568, 78-82(2019).

    [26] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [27] J. P. Barton, D. R. Alexander, S. A. Schaub. Internal and near‐surface electromagnetic fields for a spherical particle irradiated by a focused laser beam. J. Appl. Phys., 64, 1632-1639(1988).

    [28] J. P. Barton, D. R. Alexander, S. A. Schaub. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys., 66, 4594-4602(1989).

    [29] Y. Harada, T. Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun., 124, 529-541(1996).

    [30] J. P. Gordon. Radiation forces and momenta in dielectric media. Phys. Rev. A, 8, 14-21(1973).

    Li Long, Jianfeng Chen, Huakang Yu, Zhi-Yuan Li, "Strong optical force of a molecule enabled by the plasmonic nanogap hot spot in a tip-enhanced Raman spectroscopy system," Photonics Res. 8, 1573 (2020)
    Download Citation