• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101011 (2022)
Peixiong Zhang, Zhen Li, Hao Yin, and Zhenqiang Chen*
Author Affiliations
  • Guangdong Provincial Engineering Research Center of Crystal and Laser Technology, Department of Optoelectronic Engineering, College of Science & Engineering, Jinan University, Guangzhou, Guangdong 510632, China
  • show less
    DOI: 10.3788/CJL202249.0101011 Cite this Article Set citation alerts
    Peixiong Zhang, Zhen Li, Hao Yin, Zhenqiang Chen. Properties of Mid-Infrared Broadband Emission Lead Fluoride Laser Crystals[J]. Chinese Journal of Lasers, 2022, 49(1): 0101011 Copy Citation Text show less
    References

    [1] Lezal D, Zavadil J, Horak L et al. Chalcogenide glasses and fibers for applications in medicine[J]. Proceedings of SPIE, 4158, 124-132(2001).

    [2] Sanghera J S, Busse L E, Aggarwal I D et al. Infrared fibers for defense against MANPAD systems[J]. Proceedings of SPIE, 5781, 7-14(2005).

    [3] Wang K, Pei B. Mid-infrared parametric oscillator with 3.76 μm output[J]. Chinese Journal of Lasers, 8, 691-693(2000).

    [4] Hu T, Dong B W, Luo X S et al. Silicon photonic platforms for mid-infrared applications [Invited][J]. Photonics Research, 5, 417-430(2017).

    [5] Nie H K, Ning J, Zhang B T et al. Recent progress of optical-superlattice-based mid-infrared optical parametric oscillators[J]. Chinese Journal of Lasers, 48, 0501008(2021).

    [6] Ma Y Y, Li X, Huang F F et al. 2.9 μm emission properties and energy transfer mechanism in Dy3+/Tm3+-codoped tellurite glass[J]. Materials Science and Engineering: B, 196, 23-27(2015).

    [7] He D B, Kang S, Zhang L Y et al. Research and development of new neodymium laser glasses[J]. High Power Laser Science and Engineering, 5, e1(2017).

    [8] Qu C B, Kang M Q, Xiang X J et al. Theoretical study of 4.3 μm dual-wavelength pumped Dy∶InF3 high-energy mid-infrared fiber lasers[J]. Chinese Journal of Lasers, 47, 0801002(2020).

    [9] Chaitanya Kumar S, Esteban-Martin A, Ideguchi T et al. Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti: sapphire laser[J]. Laser & Photonics Reviews, 8, L86-L91(2014).

    [10] Elu U, Baudisch M, Pires H et al. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier[J]. Optica, 4, 1024-1029(2017).

    [11] Erny C, Moutzouris K, Biegert J et al. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 μm and 4.8 μm from a compact fiber source[J]. Optics Letters, 32, 1138-1140(2007).

    [12] Vasilyev S, Moskalev I S, Smolski V O et al. Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 25-μm pulses[J]. Optica, 6, 111-114(2019).

    [13] Frolov M P, Korostelin Y V, Kozlovsky V I et al. High-energy thermoelectrically cooled Fe∶ZnSe laser tunable over 3.75-4.82 μm[J]. Optics Letters, 43, 623-626(2018).

    [14] Kong X Y, Ke C J, Hu C F et al. 65 mJ Fe2+∶ZnSe mid-infrared laser at room temperature[J]. Chinese Journal of Lasers, 45, 0101011(2018).

    [15] Dinerman B J, Moulton P F. 3-μm cw laser operations in erbium-doped YSGG, GGG, and YAG[J]. Optics Letters, 19, 1143-1145(1994).

    [16] Stoneman R C, Esterowitz L. Efficient resonantly pumped 2.8-μm Er3+∶GSGG laser[J]. Optics Letters, 17, 816-818(1992).

    [17] Zhang Z, Su L B. Research progress of near 3 μm mid-infrared laser based on Er3+ doped single crystals[J]. Journal of Synthetic Crystals, 49, 1361-1368(2020).

    [18] Basiev T T, Orlovskii Y V, Polyachenkova M V et al. Continuously tunable CW lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+∶CaF2 crystals[J]. Quantum Electronics, 36, 591-594(2006).

    [19] Fan M, Li T, Zhao S et al. Watt-level passively Q-switched Er∶Lu2O3 laser at 2.84 μm using MoS2[J]. Optics Letters, 41, 540-543(2016).

    [20] Nie H K, Zhang P X, Zhang B T et al. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+,Pr3+∶LiLuF4 bulk laser at 2.95 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-5(2018).

    [21] Nie H, Xia H, Shi B et al. High-efficiency watt-level continuous-wave 2.9 μm Ho, Pr∶YLF laser[J]. Optics Letters, 43, 6109-6112(2018).

    [22] Zhang P X, Li S M, Yang Y L et al. Growth and performance optimization of mid-infrared fluoride laser crystal[J]. Journal of Synthetic Crystals, 49, 1369-1378(2020).

    [23] Zhang P X, Yin J G, Zhang B T et al. Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal[J]. Optics Letters, 39, 3942-3945(2014).

    [24] Huang X B, Wang Y H, Zhang P X et al. Efficiently strengthen and broaden 3 μm fluorescence in PbF2 crystal by Er3+/Ho3+ as co-luminescence centers and Pr3+ deactivation[J]. Journal of Alloys and Compounds, 811, 152027(2019).

    [25] Liu Y Y, Xia H P, Wang Y et al. Effect of erbium concentration on spectroscopic properties of Er: CaLaGa3O7 crystals with 2.7 μm emission[J]. Optical Materials, 72, 685-690(2017).

    [26] Chen J, Sun D, Luo J et al. Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho: GYSGG crystals[J]. Optics Letters, 38, 1218-1220(2013).

    [27] Denker B, Galagan B, Osiko V et al. Yb3+,Er3+∶YAG at high temperatures: energy transfer and spectroscopic properties[J]. Optics Communications, 271, 142-147(2007).

    [28] Zhang P X, Wang R, Huang X B et al. Sensitization and deactivation effects to Er3+ at~2.7 μm mid-infrared emission by Nd3+ ions in Gd0.1Y0.9AlO3 crystal[J]. Journal of Alloys and Compounds, 750, 147-152(2018).

    [29] Huang F F, Wang T, Guo Y Y et al. Positive influence of Tm3+ on effective Er3+:3 μm emission in fluoride glass under 980 nm excitation[J]. Infrared Physics & Technology, 82, 120-125(2017).

    [30] Huang F, Liu X, Zhang Y et al. Enhanced 2.7- and 2.84-μm emissions from diode-pumped Ho3+/Er3+-doped fluoride glass[J]. Optics Letters, 39, 5917-5920(2014).

    [31] Wang Y H, Zhang P X, Zhu S Q et al. Broadened effect of Dy around 3 μm of Yb/Er/Dy∶PbF2 crystal for broadband tunable lasers[J]. Journal of the American Ceramic Society, 103, 4445-4452(2020).

    [32] Diening A, Kück S. Spectroscopy and diode-pumped laser oscillation of Yb3+,Ho3+-doped yttrium scandium gallium garnet[J]. Journal of Applied Physics, 87, 4063-4068(2000).

    [33] Wang Y, Li J, Zhu Z et al. Activation effect of Ho3+at 2.84 μm MIR luminescence by Yb3+ions in GGG crystal[J]. Optics Letters, 38, 3988-3990(2013).

    [34] Zhang H L, Sun D L, Luo J Q et al. Growth and spectroscopic investigations of Yb, Ho∶YAP and Yb, Ho, Pr∶YAP laser crystals[J]. Journal of Luminescence, 158, 215-219(2015).

    [35] Hong J Q, Zhang L H, Xu M et al. Activation and deactivation effects to Ho3+ at~2.8 μm MIR emission by Yb3+ and Pr3+ ions in YAG crystal[J]. Optical Materials Express, 6, 1444-1450(2016).

    [36] Zhang H L, Sun D L, Luo J Q et al. Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu∶YAP laser crystal[J]. Optical Materials, 36, 1361-1365(2014).

    [37] Wang Y H, Jiang C, Zhang P X et al. Bandwidth enhancement of~3 μm emission and energy transfer mechanism in Yb3+/Ho3+/Dy3+ co-doped PbF2 crystal[J]. Journal of Luminescence, 212, 160-165(2019).

    Peixiong Zhang, Zhen Li, Hao Yin, Zhenqiang Chen. Properties of Mid-Infrared Broadband Emission Lead Fluoride Laser Crystals[J]. Chinese Journal of Lasers, 2022, 49(1): 0101011
    Download Citation