• Photonics Research
  • Vol. 12, Issue 8, 1750 (2024)
Zhenxin Wang1, Alexey V. Krasavin2, Chenxinyu Pan1, Junsheng Zheng1..., Zhiyong Li1,3, Xin Guo1,3, Anatoly V. Zayats2, Limin Tong1 and Pan Wang1,3,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2Department of Physics and London Centre for Nanotechnology, King’s College London, Strand, London WC2R 2LS, UK
  • 3Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China
  • show less
    DOI: 10.1364/PRJ.522533 Cite this Article Set citation alerts
    Zhenxin Wang, Alexey V. Krasavin, Chenxinyu Pan, Junsheng Zheng, Zhiyong Li, Xin Guo, Anatoly V. Zayats, Limin Tong, Pan Wang, "Electric tuning of plasmonic resonances in ultrathin gold nanoribbon arrays," Photonics Res. 12, 1750 (2024) Copy Citation Text show less
    References

    [1] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2010).

    [2] J. A. Schuller, E. S. Barnard, W. Cai. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 9, 193-204(2010).

    [3] H. Xu, E. J. Bjerneld, M. Käll. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett., 83, 4357-4360(1999).

    [4] E. Ozbay. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science, 311, 189-193(2006).

    [5] C. Ciracì, R. T. Hill, J. J. Mock. Probing the ultimate limits of plasmonic enhancement. Science, 337, 1072-1074(2012).

    [6] M. Kauranen, A. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737-748(2012).

    [7] R. Chikkaraddy, B. de Nijs, F. Benz. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [8] J. Mitchell. Small molecule immunosensing using surface plasmon resonance. Sensors, 10, 7323-7346(2010).

    [9] A. V. Krasavin, A. V. Zayats. Guiding light at the nanoscale: numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides. Opt. Lett., 36, 3127-3129(2011).

    [10] W. Cai, A. P. Vasudev, M. L. Brongersma. Electrically controlled nonlinear generation of light with plasmonics. Science, 333, 1720-1723(2011).

    [11] A. G. Brolo. Plasmonics for future biosensors. Nat. Photonics, 6, 709-713(2012).

    [12] D. Rodrigo, O. Limaj, D. Janner. Mid-infrared plasmonic biosensing with graphene. Science, 349, 165-168(2015).

    [13] A. Olivieri, C. Chen, S. A. Hassan. Plasmonic nanostructured metal–oxide–semiconductor reflection modulators. Nano Lett., 15, 2304-2311(2015).

    [14] A. V. Krasavin, A. V. Zayats. Benchmarking system-level performance of passive and active plasmonic components: integrated circuit approach. Proc. IEEE, 104, 2338-2348(2016).

    [15] R. Sokhoyan, P. Thureja, J. Sisler. Electrically tunable conducting oxide metasurfaces for high power applications. Nanophotonics, 12, 239-253(2023).

    [16] N. Zhou, Y. Yang, X. Guo. Strong mode coupling-enabled hybrid photon-plasmon laser with a microfiber-coupled nanorod. Sci. Adv., 8, eabn2026(2022).

    [17] P. Wang, A. V. Krasavin, M. E. Nasir. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat. Nanotechnol., 13, 159-164(2018).

    [18] Y.-W. Huang, H. W. H. Lee, R. Sokhoyan. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).

    [19] F. Moresco, M. Rocca, T. Hildebrandt. Plasmon confinement in ultrathin continuous Ag films. Phys. Rev. Lett., 83, 2238-2241(1999).

    [20] E. P. Rugeramigabo, C. Tegenkamp, H. Pfnür. One-dimensional plasmons in ultrathin metallic silicide wires of finite width. Phys. Rev. B, 81, 165407(2010).

    [21] R. A. Maniyara, D. Rodrigo, R. Yu. Tunable plasmons in ultrathin metal films. Nat. Photonics, 13, 328-333(2019).

    [22] Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede. Plasmonics in atomically thin crystalline silver films. ACS Nano, 13, 7771-7779(2019).

    [23] H. Qian, Y. Xiao, Z. Liu. Giant Kerr response of ultrathin gold films from quantum size effect. Nat. Commun., 7, 13153(2016).

    [24] R. Yu, V. Pruneri, F. J. García de Abajo. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas. Sci. Rep., 6, 32144(2016).

    [25] V. Mkhitaryan, A. P. Weber, S. Abdullah. Ultraconfined plasmons in atomically thin crystalline silver nanostructures. Adv. Mater., 36, 2302520(2023).

    [26] C. Pan, Y. Tong, H. Qian. Large area single crystal gold of single nanometer thickness for nanophotonics. Nat. Commun., 15, 2840(2024).

    [27] A. Kossoy, V. Merk, D. Simakov. Optical and structural properties of ultra-thin gold films. Adv. Opt. Mater., 3, 71-77(2015).

    [28] D. Martínez-Cercós, B. Paulillo, R. A. Maniyara. Ultrathin metals on a transparent seed and application to infrared reflectors. ACS Appl. Mater. Interfaces, 13, 46990-46997(2021).

    [29] N. Jiang, X. Zhuo, J. Wang. Active plasmonics: principles, structures, and applications. Chem. Rev., 118, 3054-3099(2018).

    [30] L. Zhou, X. Chen, G. Ren. Electrically tunable SERS based on plasmonic gold nanorod-graphene/ion-gel hybrid structure with a low voltage. Carbon, 187, 425-431(2022).

    [31] Y. Muniz, A. Manjavacas, C. Farina. Two-photon spontaneous emission in atomically thin plasmonic nanostructures. Phys. Rev. Lett., 125, 033601(2020).

    [32] I. V. Bondarev. Controlling single-photon emission with ultrathin transdimensional plasmonic films. Annalen der Physik, 535, 2200331(2023).

    [33] N. K. Emani, T.-F. Chung, A. V. Kildishev. Electrical modulation of Fano resonance in plasmonic nanostructures using graphene. Nano Lett., 14, 78-82(2014).

    [34] C. Damgaard-Carstensen, S. I. Bozhevolnyi. Nonlocal electro-optic metasurfaces for free-space light modulation. Nanophotonics, 12, 2953-2962(2023).

    [35] A. V. Krasavin, A. V. Zayats. Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. Phys. Rev. Lett., 109, 053901(2012).

    [36] G. K. Shirmanesh, R. Sokhoyan, P. C. Wu. Electro-optically tunable multifunctional metasurfaces. ACS Nano, 14, 6912-6920(2020).

    [37] P. Mulvaney, J. Pérez-Juste, M. Giersig. Drastic surface plasmon mode shifts in gold nanorods due to electron charging. Plasmonics, 1, 61-66(2006).

    [38] J. Wu, A. Y. Bykov, A. V. Krasavin. Thermal control of polarization of light with nonlocal plasmonic anisotropic metamaterials. Appl. Phys. Lett., 123, 171701(2023).

    [39] A. N. Koya, J. Cunha, K. A. Guerrero-Becerra. Plasmomechanical systems: principles and applications. Adv. Funct. Mater., 31, 2103706(2021).

    [40] A. Karki, G. Cincotti, S. Chen. Electrical tuning of plasmonic conducting polymer nanoantennas. Adv. Mater., 34, 2107172(2022).

    [41] A. Y. Bykov, Y. Xie, A. V. Krasavin. Broadband transient response and wavelength-tunable photoacoustics in plasmonic hetero-nanoparticles. Nano Lett., 23, 2786-2791(2023).

    [42] H. W. Lee, G. Papadakis, S. P. Burgos. Nanoscale conducting oxide plasmostor. Nano Lett., 14, 6463-6468(2014).

    [43] J. A. Dionne, K. Diest, L. A. Sweatlock. Plasmostor: a metal−oxide−Si field effect plasmonic modulator. Nano Lett., 9, 897-902(2009).

    [44] V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics, 1, 17-22(2012).

    [45] G. Kafaie Shirmanesh, R. Sokhoyan, R. A. Pala. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett., 18, 2957-2963(2018).

    [46] L. Liu, A. V. Krasavin, J. Zheng. Atomically smooth single-crystalline platform for low-loss plasmonic nanocavities. Nano Lett., 22, 1786-1794(2022).

    [47] C. O. Karaman, A. Y. Bykov, F. Kiani. Ultrafast hot-carrier dynamics in ultrathin monocrystalline gold. Nat. Commun., 15, 703(2024).

    [48] E. Feigenbaum, K. Diest, H. A. Atwater. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett., 10, 2111-2116(2010).

    [49] Z. Wang, L. Liu, D. Zhang. Effect of mirror quality on optical response of nanoparticle-on-mirror plasmonic nanocavities. Adv. Opt. Mater., 11, 2201914(2023).

    [50] R. Amin, R. Maiti, Y. Gui. Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI. Sci. Rep., 11, 1287(2021).

    [51] A. Melikyan, N. Lindenmann, S. Walheim. Surface plasmon polariton absorption modulator. Opt. Express, 19, 8855-8869(2011).

    [52] J. H. Ni, W. L. Sarney, A. C. Leff. Property variation in wavelength-thick epsilon-near-zero ITO metafilm for near IR photonic devices. Sci. Rep., 10, 713(2020).

    [53] R. L. Olmon, B. Slovick, T. W. Johnson. Optical dielectric function of gold. Phys. Rev. B, 86, 235147(2012).

    [54] K. Fuchs. The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Cambridge, 34, 100-108(1938).

    [55] E. H. Sondheimer. The mean free path of electrons in metals. Adv. Phys., 50, 499-537(2001).

    Zhenxin Wang, Alexey V. Krasavin, Chenxinyu Pan, Junsheng Zheng, Zhiyong Li, Xin Guo, Anatoly V. Zayats, Limin Tong, Pan Wang, "Electric tuning of plasmonic resonances in ultrathin gold nanoribbon arrays," Photonics Res. 12, 1750 (2024)
    Download Citation