• High Power Laser and Particle Beams
  • Vol. 33, Issue 6, 065005 (2021)
Shuaikang Li1、2, Bangdou Huang1, Cheng Zhang1、2, and Tao Shao1、2
Author Affiliations
  • 1Beijing International S & T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11884/HPLPB202133.210008 Cite this Article
    Shuaikang Li, Bangdou Huang, Cheng Zhang, Tao Shao. Development and application of all-solid-state bi-polar nanosecond pulse generators[J]. High Power Laser and Particle Beams, 2021, 33(6): 065005 Copy Citation Text show less
    Overall block diagram of bipolar nanosecond pulse power supply
    Fig. 1. Overall block diagram of bipolar nanosecond pulse power supply
    Schematic diagram of pulse production circuit
    Fig. 2. Schematic diagram of pulse production circuit
    Energy flow path of pulse charging and discharging
    Fig. 3. Energy flow path of pulse charging and discharging
    Voltage waveform of capacitor C3
    Fig. 4. Voltage waveform of capacitor C3
    Pictures of bipolar pulse power supply
    Fig. 5. Pictures of bipolar pulse power supply
    Output results of two power supplies with different input voltages
    Fig. 6. Output results of two power supplies with different input voltages
    High frequency working waveforms
    Fig. 7. High frequency working waveforms
    Burst mode waveforms
    Fig. 8. Burst mode waveforms
    Temperature rise of two power supplies
    Fig. 9. Temperature rise of two power supplies
    Operating temperature of two power supply IGBTs
    Fig. 10. Operating temperature of two power supply IGBTs
    10 kV power supply produces discharge plasma
    Fig. 11. 10 kV power supply produces discharge plasma
    Output voltage and current waveform of 10 kV power supply with load
    Fig. 12. Output voltage and current waveform of 10 kV power supply with load
    25 kV power supply produces discharge plasma
    Fig. 13. 25 kV power supply produces discharge plasma
    parametervalue
    10 kV pulse generator25 kV pulse generator
    Note: inductance values of each parameter are tested under 0.1, 1, 10 kHz.
    magnetic core size/mm25/40/1535/60/20
    saturation magnetic induction/T0.541.2
    square ratio0.940.85
    N1N22∶252∶42
    inductance of primary winding/μH63/56.9/50.5567/42.2/35.13
    inductance of secondary winding/mH24.8/9.131/5.42169.94/28.98/16.94
    leakage inductance of primary winding/μH1/0.5/0.4925/1.3/1.023
    leakage inductance of secondary winding/mH0.851/0.163/0.5161.65/0.447/0.314
    IGBTIRGPS60B120KD2MBI450VH-120-50
    Table 1. [in Chinese]
    technical routepeak-to-peak voltage/kVpulse repetition frequency/kHzrise time/nspulse width/nsreference
    Marx generator based on solid-state switches100.13283100[9]
    cascaded superposition20102005000[10]
    drift step recovery diode2.210001~3[12]
    linear transformer driver5330030~100[13]
    magnetic compression2050050104this work
    5020090254
    Table 2. [in Chinese]
    power sourcepeak-to-peak voltage/kVdischarge areareferences
    2 kHz AC11.930.4 mm×10 mm[23]
    35~55 kHz AC12~2150 mm×15 mm[24]
    positive pulse2070 mm×19 mm[25]
    bipolar pulse2081 mm×25 mmthis work
    Table 3. [in Chinese]
    power sourceelectrode geometryvoltage/kVdistance/mmreferences
    DC powerwire-to-plate3020[26]
    DC powerwire-to-plate2250[27]
    DC powerwire-to-plate1820[28]
    positive pulsetube-to-plate3130[29]
    positive pulsepin-to-pin17.510[30]
    negative pulsepin/tube-to-plate10040[31]
    bipolar pulsewire-to-plate2560this work
    Table 4. [in Chinese]
    Shuaikang Li, Bangdou Huang, Cheng Zhang, Tao Shao. Development and application of all-solid-state bi-polar nanosecond pulse generators[J]. High Power Laser and Particle Beams, 2021, 33(6): 065005
    Download Citation