[1] Han J, Li Y Z, Li F. Spatio-temporal distribution characteristic of PM 2.5 concentration and the difference of PM 2.5 concentration between urban areas and rural areas in China from 2000 to 2015 [J]. Acta Ecologica Sinica , 2019, 39(8): 2954-2962.
[2] Mori T, Goto-Azuma K, Kondo Y, et al . Black carbon and inorganic aerosols in Arctic snowpack [J]. Journal of Geophysical Research: Atmospheres , 2019, 124(23): 13325-13356.
[3] Xie Y B, Chen J, Li W. An assessment of PM 2.5 related health risks and impaired values of Beijing residents in a consecutive high-level exposure during heavy haze days [J]. Environmental Science , 2014, 35(1): 1-8.
[4] Wan Y, Li Y H, Liu C H, et al . Is traffic accident related to air pollution? A case report from an island of Taihu Lake, China [J]. Atmospheric Pollution Research , 2020, 11(5): 1028-1033.
[5] Su W, Zhang S J, Lai X Y, et al . Spatiotemporal dynamics of atmospheric PM 2.5 and PM 10 and its influencing factors in Nanchang, China [J]. Chinese Journal of Applied Ecology , 2017, 28(1): 257-265.
[6] Hu J L, Wang Y G, Ying Q, et al . Spatial and temporal variability of PM 2.5 and PM 10 over the North China Plain and the Yangtze River Delta, China [J]. Atmospheric Environment , 2014, 95: 598-609.
[7] Zhang Y Y. Characteristic of Water-Soluble Ions in PM 2.5 in the Northern Suburb of Nanjing Based on On-Line Monitoring [D]. Nanjing: Nanjing University of Information Science & Technology, 2017.
[8] Wang K. Study on the Monitoring Method of Night Haze in Beijing Area Based on Radiative Transfer Model [D]. Chongqing: Chongqing Jiaotong University, 2017.
[9] Guo J P, Zhang X Y, Wu Y R, et al . Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980-2008 [J]. Atmospheric Environment , 2011, 45(37): 6802-6811.
[10] Wang J, Christopher S A. Intercomparison between satellite-derived aerosol optical thickness and PM 2.5 mass: implications for air quality studies [J]. Geophysical Research Letters , 2003, 30(21): 2095.
[11] Hammer M S, van Donkelaar A, Li C, et al . Global estimates and long-term trends of fine particulate matter concentrations (1998-2018) [J]. Environmental Science & Technology , 2020, 54(13): 7879-7890.
[12] van Donkelaar A, Martin R V, Brauer M, et al . Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter [J]. Environmental Health Perspectives , 2015, 123(2): 135-143.
[13] van Donkelaar A, Martin R V, Li C, et al . Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors [J]. Environmental Science & Technology , 2019, 53(5): 2595-2611.
[14] Chu D A, Tsai T C, Chen J P, et al . Interpreting aerosol lidar profiles to better estimate surface PM 2.5 for columnar AOD measurements [J]. Atmospheric Environment , 2013, 79: 172-187.
[15] Zhang Y, Li Z Q, Chang W Y, et al . Satellite observations of PM 2.5 changes and driving factors based forecasting over China 2000-2025 [J]. Remote Sensing , 2020, 12(16): 2518.
[16] Zhang Y, Li Z Q. Remote sensing of atmospheric fine particulate matter (PM 2.5 ) mass concentration near the ground from satellite observation [J]. Remote Sensing of Environment , 2015, 160: 252-262.
[17] Zhang H, Wang S G, Xin J Y, et al . The temporal and spatial distribution characteristics of PM 2.5 in the Sichuan Basin based on MODIS AOD revised by ground-based observations [J]. Journal of Lanzhou University (Natural Sciences) , 2019, 55(5): 610-615.
[18] Xia Z Y, Liu Z H, Wang Y Q, et al . Research on ground-level PM 2.5 mass concentration retrieval based on MODIS aerosol optical thickness [J]. Plateau Meteorology , 2015, 34(6): 1765-1771.
[19] Xia J H. Spatio-Temporal Pattern Analysis of Meteorological-data-Based PM 2.5 Concentration in China: 1980-2016 [D]. Wuhan: Wuhan University, 2019.
[20] Cui X H, Xie J F, Zhang F, et al . Establishment of PM 2.5 forecasting model based on deep learning [J]. Beijing Surveying and Mapping , 2017, (6): 22-27.
[21] Chen N, Mao S J, Li D L, et al . PM 2.5 prediction model based on multi-station co-training neural network [J]. Science of Surveying and Mapping , 2018, 43(7): 87-93.
[22] Wei J, Li Z Q, Cribb M, et al . Improved 1-km-resolution PM 2.5 estimates across China using enhanced space-time extremely randomized trees [J]. Atmospheric Chemistry and Physics , 2020, 20(6): 3273-89.
[23] Wei J, Li Z Q, Lyapustin A, et al . Reconstructing 1-km-resolution high-quality PM 2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications [J]. Remote Sensing of Environment , 2021, 252: 112136.
[24] Jin X, Fiore A M, Curci G, et al . Assessing uncertainties of a geophysical approach to estimate surface fine particulate matter distributions from satellite-observed aerosol optical depth [J]. Atmospheric Chemistry and Physics , 2019, 19(1): 295-313.
[25] van Donkelaar A, Martin R V, Park R J. Estimating ground-level PM 2.5 using aerosol optical depth determined from satellite remote sensing [J]. Journal of Geophysical Research: Atmospheres , 2006, 111: D21201.
[26] Liu Y, Park R J, Jacob D J, et al . Mapping annual mean ground-level PM 2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States [J]. Journal of Geophysical Research: Atmospheres , 2004, 109: D22206.
[27] van Donkelaar A, Martin R V, Brauer M, et al . Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application [J]. Environmental Health Perspectives , 2010, 118(6): 847-855.
[28] van Donkelaar A, Martin R V, Spurr R J D, et al . Optimal estimation for global ground-level fine particulate matter concentrations [J]. Journal of Geophysical Research: Atmospheres , 2013, 118(11): 5621-5636.
[29] Wei J, Li Z Q, Sun L, et al . Improved merge schemes for MODIS Collection 6.1 Dark Target and Deep Blue combined aerosol products [J]. Atmospheric Environment , 2019, 202: 315-327.
[30] Wei J, Li Z Q, Peng Y R, et al . MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison [J]. Atmospheric Environment , 2019, 201: 428-440.
[31] Lefever D W. Measuring geographic concentration by means of the standard deviational ellipse [J]. American Journal of Sociology , 1926, 32(1): 88-94.
[32] Li D R, Yu H R, Li X. The spatial-temporal pattern analysis of city development in countries along the Belt and Road initiative based on nighttime light data [J]. Geomatics and Information Science of Wuhan University , 2017, 42(6): 711-720.
[33] Zhao L, Zhao Z Q. Projecting the spatial variation of economic based on the specific ellipses in China [J]. Scientia Geographica Sinica , 2014, 34(8): 979-986.
[34] Gao C C, Zhu H F, Xiao H L, et al . Dynamic evolution of spatial difference of regional economy in Hunan Province based on spatial statistical analysis [J]. Geomatics & Spatial Information Technology , 2019, 42(8): 46-51.
[35] Guo S F, Guo J H, Zhao G H. The analysis of spatial and temporal transition paths and convergence evolution of county innovation level evidence-based on the patent data of county scale in Shanxi Province [J]. Science & Technology Progress and Policy , 2019, 36(4): 50-57.
[36] Lin M, Duan Z R, Cai D. Analysis and countermeasure of hot spot of battery car theft crime [J]. Legal System and Society , 2017, (13): 25-26.
[37] Tobler W R. A computer movie simulating urban growth in the Detroit region [J]. Economic Geography , 1970, 46(sup1): 234-240.
[38] de Jong P, Sprenger C, van Veen F. On extreme values of Moran ′ s I and Geary ′ s c [J]. Geographical Analysis , 1984, 16(1): 17-24.
[39] Liu H, He K B, Ma Y L, et al . Variations of PM 2.5 and its water-soluble ions in urban and suburban Beijing before, during, and after the 2008 Olympiad [J]. Acta Scientiae Circumstantiae , 2011, 31(1): 177-185.
[40] Wu Y H, He X, Li C C, et al . Application of remote sensing atmospheric aerosol optical depth on monitoring the surface air quality in 2008 of Beijing [J]. Journal of Atmospheric and Environmental Optics , 2009, 4(4): 266-273.
[41] Wang Z J, Han L H, Chen X F, et al . Characteristics and sources of PM 2.5 in typical atmospheric pollution episodes in Beijing [J]. Journal of Safety and Environment , 2012, 12(5): 122-126.
[43] Chen H, Li Q, Li Y, et al . Monitoring and analysis of the spatio-temporal change characteristics of the PM 2.5 concentration over Beijing-Tianjin-Hebei and its surrounding regions based on remote sensing [J]. Environmental Science , 2019, 40(1): 33-43.
[44] Shan W. Climate change and evolution of extreme weather events in Nanyang city in the past 50 years[C]. the Annual Meeting of the Chinese Meteorological Society, October 1, 2006, Chengdu, Sichuan, China . 2006: 871-875.
[45] Yin Y Z, Wang M, Wang J Y, et al . The relationships of pollution characteristics of PM 10 , PM 2.5 and meteorological parameters in Nanyang City [J]. Arid Environmental Monitoring , 2018, 32(1): 12-18.