• Chinese Journal of Lasers
  • Vol. 47, Issue 11, 1108001 (2020)
Tian Yuhang1, Wang Junping1, Yang Wenhai2, Tian Long1、3、*, Wang Yajun1、3, and Zheng Yaohui1、3
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 2China Academy of Space Technology (Xi''an), Xi''an, Shaanxi 710100, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/CJL202047.1108001 Cite this Article Set citation alerts
    Tian Yuhang, Wang Junping, Yang Wenhai, Tian Long, Wang Yajun, Zheng Yaohui. Frequency Doubling System for Integrated Quantum Squeezed Light Source Based on MgO∶LiNbO3 Crystal[J]. Chinese Journal of Lasers, 2020, 47(11): 1108001 Copy Citation Text show less
    References

    [1] Yan Z H, Wu L, Jia X J et al. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles[J]. Nature Communications, 8, 718(2017). http://dx.doi.org/10.1038/s41467-017-00809-9

    [2] Vahlbruch H, Mehmet M, Lastzka N et al. Observation of squeezed light with 10-dB quantum-noise reduction[J]. Physical Review Letters, 100, 033602(2008). http://www.ncbi.nlm.nih.gov/pubmed/18232978?dopt=Abstract

    [3] Dwyer S, Barsotti L, Chua S et al. Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light[J]. Optics Express, 21, 19047-19060(2013). http://europepmc.org/abstract/MED/23938820

    [4] Zhang T, Goh K W, Chou C et al. Quantum teleportation of light beams[J]. Physical Review A, 67, 033802(2003).

    [5] Sun X C, Wang Y J, Tian L et al. Dependence of the squeezing and anti-squeezing factors of bright squeezed light on the seed beam power and pump beam noise[J]. Optics Letters, 44, 1789-1792(2019).

    [6] Niu N, Qu D P, Dou W et al. 348.9 nm intra-cavity frequency-doubling ultraviolet laser in blue laser diode pumped Pr∶YLF crystal[J]. Chinese Journal of Lasers, 45, 1201003(2018).

    [7] Cui X Y, Shen Q, Yan M C et al. High-power 671 nm laser by second-harmonic generation with 93% efficiency in an external ring cavity[J]. Optics Letters, 43, 1666-1669(2018).

    [8] Yao X C, Chen H Z, Wu Y P et al. Observation of coupled vortex lattices in a mass-imbalance Bose and fermi superfluid mixture[J]. Physical Review Letters, 117, 145301(2016).

    [9] Guo S L, Ge Y L, Han Y S et al. Investigation of optical inhomogeneity of MgO∶PPLN crystals for frequency doubling of 1560 nm laser[J]. Optics Communications, 326, 114-120(2014).

    [10] Dingjan J, Darquié B, Beugnon J et al. A frequency-doubled laser system producing ns pulses for rubidium manipulation[J]. Applied Physics B, 82, 47-51(2006). http://link.springer.com/article/10.1007/s00340-005-2027-7

    [11] Bakr W, Gillen J, Peng A et al. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice[J]. Nature, 462, 74-77(2009).

    [12] Simon J, Bakr W, Ma R C et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice[J]. Nature, 472, 307-312(2011).

    [13] Meng W D, Zhang H F, Deng H R et al. 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection[J]. Acta Physica Sinica, 69, 019502(2020).

    [14] Yin W B, Ma W G, Wang L R et al. Research on the distributed optical remote sensing of methane employing single laser source[J]. Chinese Optics letters, 2, 86-88(2004). http://www.opticsjournal.net/Articles/Abstract?aid=OJ060606000898w3z6B9

    [15] Shi S P, Wang Y J, Yang W H et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption[J]. Optics Letters, 43, 5411-5414(2018). http://www.ncbi.nlm.nih.gov/pubmed/30383020

    [16] Wan Z J, Feng J X, Li Y J et al. Comparison of phase quadrature squeezed states generated from degenerate optical parametric amplifiers using PPKTP and PPLN[J]. Optics Express, 26, 5531-5540(2018).

    [17] Burks S, Ortalo J, Chiummo A et al. Vacuum squeezed light for atomic memories at the D2 cesium line[J]. Optics Express, 17, 3777-3781(2009).

    [18] Takei N, Lee N, Moriyama D et al. Time-gated Einstein-Podolsky-Rosen correlation[J]. Physical Review A, 74, 060101(2006).

    [19] Eberle T, Händchen V, Schnabel R. Stable control of 10 dB two-mode squeezed vacuum states of light[J]. Optics Express, 21, 11546-11553(2013).

    [20] Pan J W, Bouwmeester D, Daniell M et al. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement[J]. Nature, 403, 515-519(2000). http://www.ncbi.nlm.nih.gov/pubmed/10676953/?ncbi_mmode=std

    [21] Bao X H, Qian Y, Yang J et al. Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories[J]. Physical Review Letters, 101, 190501(2008).

    [22] Vahlbruch H, Mehmet M, Danzmann K et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 117, 110801(2016).

    [23] Yang W H, Shi S P, Wang Y J et al. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations[J]. Optics Letters, 42, 4553-4556(2017).

    [24] Arnbak J, Jacobsen C S, Andrade R B et al. Compact, low-threshold squeezed light source[J]. Optics Express, 27, 37877-37885(2019). http://arxiv.org/abs/1909.1160

    [25] Meier T, Willke B, Danzmann K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode[J]. Optics Letters, 35, 3742-3744(2010).

    [26] Chen H Z, Liu X, Wang X Q et al. 30 W, sub-kHz frequency-locked laser at 532 nm[J]. Optics Express, 26, 33756-33763(2018).

    [27] Xu X F, Lu Y H, Zhang L et al. Technical study of 8.7 W continuous wave single frequency green laser based on extra-cavity frequency doubling[J]. Chinese Journal of Lasers, 43, 1101010(2016).

    [28] Boyd G D, Kleinman D. Parametric interaction of focused Gaussian light beams[J]. Journal of Applied Physics, 39, 3597-3639(1968).

    [29] Zhang W H, Yang W H, Shi S P et al. Mode matching in preparation of squeezed field with high compressibility[J]. Chinese Journal of Lasers, 44, 1112001(2017).

    [30] Li Z X, Tian Y H, Wang Y J et al. Residual amplitude modulation and its mitigation in wedged electro-optic modulator[J]. Optics Express, 27, 7064-7071(2019).

    [31] Zhang H Y, Wang J R, Li Q H et al. Experimental realization of high quality factor resonance detector[J]. Journal of Quantum Optics, 25, 456-462(2019).

    [32] Shi S P, Yang W H, Zheng Y H et al. Noise analysis of single-frequency laser source in preparation of squeezed-state light field[J]. Chinese Journal of Lasers, 46, 0701009(2019).

    [33] Kerdoncuff H, Christensen J B, Brasil T B et al. Cavity-enhanced sum-frequency generation of blue light with near-unity conversion efficiency[J]. Optics Express, 28, 3975-3984(2020).

    Tian Yuhang, Wang Junping, Yang Wenhai, Tian Long, Wang Yajun, Zheng Yaohui. Frequency Doubling System for Integrated Quantum Squeezed Light Source Based on MgO∶LiNbO3 Crystal[J]. Chinese Journal of Lasers, 2020, 47(11): 1108001
    Download Citation