[1] N PICQUÉ, T W HÄNSCH. Frequency comb spectroscopy. Nature Photonics, 13, 146-157(2019).
[2] Z L NEWMAN, V MAURICE, T DRAKE et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).
[3] V TORRES-COMPANY, J SCHRÖDER, A FÜLÖP et al. Laser frequency combs for coherent optical communications. Journal of Lightwave Technology, 37, 1663-1670(2019).
[4] V TORRES-COMPANY, A M WEINER. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser & Photonics Reviews, 8, 368-393(2014).
[5] L E HARGROVE, R FORK, M A POLLACK. Locking of He-Ne laser modes induced by synchronous intracavity modulation. Applied Physics Letters, 5, 4-5(1964).
[6] A PARRIAUX, K HAMMANI, G MILLOT. Electro-optic frequency combs. Advances in Optics and Photonics, 12, 223-287(2020).
[7] P DEL′HAYE, A SCHLIESSER, O ARCIZET et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).
[8] Y K CHEMBO. Kerr optical frequency combs: theory, applications and perspectives. Nanophotonics, 5, 214-230(2016).
[9] M KOUROGI, K NAKAGAWA, M OHTSU. Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE Journal of Quantum Electronics, 29, 2693-2701(1993).
[10] S XIAO, L HOLLBERG, N R NEWBURY et al. Toward a low-jitter 10 GHz pulsed source with an optical frequency comb generator. Optics Express, 16, 8498-8508(2008).
[11] M YU, C REIMER, D BARTON et al. Femtosecond pulse generation via an integrated electro-optic time lens.
[12] A KLENNER, A S MAYER, A R JOHNSON et al. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. Optics Express, 24, 11043-11053(2016).
[13] D WALDBURGER, A S MAYER, C G E ALFIERI et al. Tightly locked optical frequency comb from a semiconductor disk laser. Optics Express, 27, 1786-1797(2019).
[14] M A G PORCEL, F SCHEPERS, J P EPPING et al. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Optics Express, 25, 1542-1554(2017).
[15] D D HICKSTEIN, D R CARLSON, H MUNDOOR et al. Self-organized nonlinear gratings for ultrafast nanophotonics. Nature Photonics, 13, 494-499(2019).
[16] D D HICKSTEIN, H JUNG, D R CARLSON et al. Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Physical Review Applied, 8, 014025(2017).
[17] C WANG, M ZHANG, M YU et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature Communications, 10, 978(2019).
[18] C WANG, C LANGROCK, A MARANDI et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).
[19] M YU, B DESIATOV, Y OKAWACHI et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Optics Letters, 44, 1222-15225(2019).
[20] J LU, J B SURYA, X LIU et al. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Optics Letters, 44, 1492-1495(2019).
[21] I SHOJI, T KONDO, A KITAMOTO et al. Absolute scale of second-order nonlinear-optical coefficients. Journal of the Optical Society of America B-optical Physics, 14, 2268-2294(1997).
[22] F BARONIO, M CONFORTI, C DE ANGELIS et al. Second and third order susceptibilities mixing for supercontinuum generation and shaping. Optical Fiber Technology, 18, 283-289(2012).
[23] Y OKAWACHI, M YU, B DESIATOV et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica, 7, 702-707(2020).
[24] J M DUDLEY, G GENTY, S COEN. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78, 1135-1184(2006).