• High Power Laser and Particle Beams
  • Vol. 31, Issue 10, 103204 (2019)
Li Kexun1、2、*, Ma Jiangjiang1、2, Zhang Zekui1、2, Ma Chen1、2, Jia Kun1、2, Liu Wei1、2, Zhang Jie1、2, Li Jing1、2, and Wang Donghong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11884/hplpb201931.190102 Cite this Article
    Li Kexun, Ma Jiangjiang, Zhang Zekui, Ma Chen, Jia Kun, Liu Wei, Zhang Jie, Li Jing, Wang Donghong. Study on epoxy resin-based carbon nanocomposite for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2019, 31(10): 103204 Copy Citation Text show less
    References

    [1] Gajsek P, Ravazzani P, Wiart J, et al. Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz-6 GHz)[J]. J Expo Sci Environ Epidemiol, 2015, 25(1): 37-44.

    [2] Carlberg M, Koppel T, Ahonen M, et al. Case-control study on occupational exposure to extremely low-frequency electromagnetic fields and glioma risk[J]. Am J Ind Med, 2017, 60(5): 494-503.

    [3] Zou T, Shi C, Zhao N. Microwave absorbing properties of the Archimedean plane spiral antenna array/epoxy resin composites[J]. Materials Science and Engineering B, 2007, 142: 51-54.

    [4] Oh J Hn, Oh K S, Kim C G. Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges[J]. Composites: Part B, 2004, 35: 49-56.

    [5] Iwamaru T, Katsumata H, Uekusa S. Development of microwave absorbing materials prepared from a polymer binder including Japanese lacquer and epoxy resin[J]. Physics Procedia, 2012, 23: 69-72.

    [6] Biswas S, Panja S S, Bose S. Tailored distribution of nanoparticles in biphasic polymeric blends as emerging materials for suppressing electromagnetic radiation: challenges and prospects[J]. J Mater Chem C, 2018, 13 (6) : 3120-3142.

    [7] Lü L, Liu J, Liu H, et al. An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding[J]. Eng Sci, 2018, 2: 26-42.

    [8] Wan Y J, Zhu P L, Yu S H, et al. Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy[J]. Carbon, 2017, 122: 74-81.

    [9] Shishkin A, Koppel T, Mironov V, et al. Microwave reflectance and transmittance properties of conductive composite materials[J]. Energy Procedia, 2017, 113: 354-361.

    [10] Mondal S, Nayak L, Rahaman M, et al. An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites[J]. Compos B Eng, 2017, 109: 155-169.

    [11] Li M, Xiao S Q, Bai Y Y, et al. An ultrathin and broadband radar absorber using resistive FSS[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 748-751.

    [12] Noor A, Hu Z. Metamaterial dual polarised resistive Hilbert curve array radar absorber[J]. Microw Antennas Propag, 2010, 4(6): 667-673.

    [13] Zhou E, Xi J, Gao C, et al. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films[J]. Carbon, 2018, 133: 316-322.

    [14] Wang C, Murugadoss V, Kong J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J]. Carbon, 2018, 140: 696-733.

    [15] Zeng Z, Jin H, Chen M, et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding[J]. Adv Funct Mater, 2016, 26(2): 303-310.

    [16] Chen Z, Xu C, Ma C, et al. Lightweight and flexible grapheme foam composites for high-performance electromagnetic interference shielding[J]. Adv Mater, 2013, 25(9) : 1296-1300.

    [17] Zhao D L, Li X, Shen Z M. Electromagnetic and microwave absorbing properties of multi-walled-carbon nanotubes filled with Ag nanowires[J]. Mat Sci Eng B, 2008, 150(2): 105-110.

    [18] Fan Z J, Lou G H, Zhang Z F, et al. Electromagnetic and microwave absorbing properties of multiwalled carbon nanotubes/polymer composites[J]. Mat Sci Eng B, 2006, 132(1/2): 85-89.

    [19] Sandler J K W, Kirk J E, Kinloch I A, et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites[J]. Polymer, 2003, 44(19): 5893-5899.

    [20] Martin C A, Sandler J K W, Shaffer M S P, et al. Formation of percolating networks in multi-wall carbon nanotube-epoxy composites[J]. Compos Sci Technol, 2004, 64(15): 1236-2309.

    [21] Moisala A, Li Q, Kinloch IA, et al. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites[J]. Compos Sci Technol, 2006, 66(10): 1285-1288.

    [22] Liu L, Matitsine S, Gan Y B, et al. Frequency dependence of effective permittivity of carbon nanotube composites[J]. J Appl Phys, 2007, 101: 094106.

    [23] Yuen S M, Ma C C M, Wu H H, et al. Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotube and epoxy composites[J]. J Appl Polym Sci, 2007, 103(2): 1272-1278.

    [24] Wichmann M H G, Sumfleth J, Fiedler B, et al. Multiwall carbon nanotube/epoxy composites produced by a masterbatch process[J]. Mech Comp Ma, 2006, 42(5): 395-406.

    [25] Boncel S, Krzysztof K K, Walczak K Z, et al. Infiltration of highly aligned carbon nanotube arrays with molten polystyrene[J]. Materials Letters, 2011, 65: 2299-2303.

    [26] Bauhofer W, Kovacs J Z. A review and analysis of electrical percolation in carbon nanotube polymer composites[J]. Composites Science and Technology, 2009, 69: 1486-1498.

    [28] Hata K, Futaba D N, Iijima S, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science, 2004, 306(5700): 1362-1364.

    [29] Zhang G, Mann D, Zhang L, et al. Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen[J]. Proc Nat Acad Sci, 2005, 102(45): 16141-16145.

    [30] Fan S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Science, 1999, 283(5401): 512-514.

    [31] Chen X Q, Saito T, Yamada H, et al. Aligning single-wall carbon nanotubes with an alternating-current electric field[J]. Appl Phys Lett, 2001, 78(23): 3714-3716.

    [32] Heremans J, Olk C H, Morelli D T. Magnetic susceptibility of carbon structures[J]. Phys Rev B, 1994, 49(21): 15122-15125.

    [33] Yoon D K, Lee S R, Kim Y H, et al. Large-area, highly aligned cylindrical perfluorinated supramolecular dendrimers using magnetic fields[J]. Adv Mater, 2006, 18(4): 509-513.

    [34] Zhang M, Fang S, Zakhidov A A, et al. Strong, transparent, multifunctional, carbon nanotube sheets[J]. Science 2005, 309(5738): 1215-1219.

    [35] Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology[J]. Science 2004, 306(5700): 1358-1361.

    [36] Liu P, Liu L, Fan S, et al. Fast high-temperature response of carbon nanotube film and its application as an incandescent display[J]. Adv Mater, 2009, 21(35): 3563-3566.

    [37] Jiang S, Hou P X, Chen M L, et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes[J]. Sci Adv 2018, 4: 9264.

    [39] Arjmand M, Chizari K, Krause B, et al. Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites[J]. Carbon, 2016, 98: 358-372.

    Li Kexun, Ma Jiangjiang, Zhang Zekui, Ma Chen, Jia Kun, Liu Wei, Zhang Jie, Li Jing, Wang Donghong. Study on epoxy resin-based carbon nanocomposite for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2019, 31(10): 103204
    Download Citation