• Acta Physica Sinica
  • Vol. 68, Issue 9, 094201-1 (2019)
Chun-Jing Lü1 and Yi-Ping Han2、*
Author Affiliations
  • 1School of Telecommunitions Engineering, Xidian University, Xi’an 710071, China
  • 2School of Physics and Optoelectronic, Xidian University, Xi’an 710071, China
  • show less
    DOI: 10.7498/aps.68.20182169 Cite this Article
    Chun-Jing Lü, Yi-Ping Han. Analysis of propagation characteristics of Gaussian beams in turbulent plasma sheaths[J]. Acta Physica Sinica, 2019, 68(9): 094201-1 Copy Citation Text show less
    (a) Five regions; (b) refractive index variance in five regions.(a)五个区域; (b)五个区域的折射率方差
    Fig. 1. (a) Five regions; (b) refractive index variance in five regions. (a)五个区域; (b)五个区域的折射率方差
    Refractive index variance in different regions: (a) Head area 1; (b) side area 2.折射率方差(a)头部区域1; (b)侧部区域2
    Fig. 2. Refractive index variance in different regions: (a) Head area 1; (b) side area 2. 折射率方差  (a)头部区域1; (b)侧部区域2
    Intensity distribution of S-FFT and D-FFT algorithm at different diffraction distances: (a) S-FFT, = 100 mm; (b) D-FFT, = 100 mm; (c) S-FFT, = 10 mm; (d) D-FFT, = 10 mm.在不同衍射距离下S-FFT和D-FFT两种算法的光强分布 (a) S-FFT, = 100 mm; (b) D-FFT, = 100 mm; (c) S-FFT, = 10 mm; (d) D-FFT, = 10 mm
    Fig. 3. Intensity distribution of S-FFT and D-FFT algorithm at different diffraction distances: (a) S-FFT, = 100 mm; (b) D-FFT, = 100 mm; (c) S-FFT, = 10 mm; (d) D-FFT, = 10 mm. 在不同衍射距离下S-FFT和D-FFT两种算法的光强分布 (a) S-FFT, = 100 mm; (b) D-FFT, = 100 mm; (c) S-FFT, = 10 mm; (d) D-FFT, = 10 mm
    Schematic diagram of multi-random phase screen.多随机相位屏示意图
    Fig. 4. Schematic diagram of multi-random phase screen.多随机相位屏示意图
    Numerical simulation of intensity of Gaussian beam in different propagation conditions: (a) λ = 1.55 × 10–6 m, ω0 = 40 mm, d = 13 mm; (b) ω0 = 40 mm, d = 13 mm, = 10–12; (c) λ = 1.55 × 10–6 m, ω0 = 40 mm, = 10–12.不同传输条件时的高斯光束光强数值仿真 (a) λ = 1.55 × 10–6 m, ω0 = 40 mm, d = 13 mm; (b) ω0 = 40 mm, d = 13 mm, = 10–12; (c) λ = 1.55 × 10–6 m, ω0 = 40 mm, = 10–12
    Fig. 5. Numerical simulation of intensity of Gaussian beam in different propagation conditions: (a) λ = 1.55 × 10–6 m, ω0 = 40 mm, d = 13 mm; (b) ω0 = 40 mm, d = 13 mm, = 10–12; (c) λ = 1.55 × 10–6 m, ω0 = 40 mm, = 10–12. 不同传输条件时的高斯光束光强数值仿真 (a) λ = 1.55 × 10–6 m, ω0 = 40 mm, d = 13 mm; (b) ω0 = 40 mm, d = 13 mm, = 10–12; (c) λ = 1.55 × 10–6 m, ω0 = 40 mm, = 10–12
    No.Reaction
    1${\rm {N_2} + M \rightleftharpoons N + N + M}$
    2${\rm {O_2} + M \rightleftharpoons O + O + M}$
    3${\rm NO + M \rightleftharpoons N + O + M}$
    4${\rm O + {N_2} \rightleftharpoons NO + N}$
    5${\rm NO + O \rightleftharpoons {O_2} + N}$
    6${\rm N + O \rightleftharpoons N{O^ + } + e}$
    Table 1.

    Reactions considered in chemistry model

    化学反应模型中的方程

    Chun-Jing Lü, Yi-Ping Han. Analysis of propagation characteristics of Gaussian beams in turbulent plasma sheaths[J]. Acta Physica Sinica, 2019, 68(9): 094201-1
    Download Citation