• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 11, 4003 (2022)
SHI Xiaofei*, HOU Huanran, JIN Yangli, HUANG Youqi, WANG Yanhang, and ZU Chengkui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    SHI Xiaofei, HOU Huanran, JIN Yangli, HUANG Youqi, WANG Yanhang, ZU Chengkui. Research Progress of Compatibility Technology of Radar Shielding Stealth and Optical Transparency[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4003 Copy Citation Text show less
    References

    [1] WANG Q, SUN L N, HU C W, et al. Research of novel functional stealthy nanomaterials[J]. Advanced Materials Research, 2012, 534: 7377.

    [3] RAMYA K. Radar absorbing material (RAM)[J]. Applied Mechanics and Materials, 2013, 390: 450453.

    [4] RAO G A, MAHULIKAR S P. Integrated review of stealth technology and its role in airpower[J]. The Aeronautical Journal, 2022, 2751: 629641.

    [5] STADLER A. Transparent conducting oxidesan uptodate overview[J]. Materials (Basel, Switzerland), 2012, 5(4): 661683.

    [6] HAN Y, ZHONG H, LIU N, et al. In situ surface oxidized copper mesh electrodes for highperformance transparent electrical heating and electromagnetic interference shielding[J]. Advanced Electronic Materials, 2018, 4(11): 1800156.

    [7] SANNICOLO T, LAGRANGE M, CABOS A, et al. Metallic nanowirebased transparent electrodes for next generation flexible devices: a review[J]. Small (Weinheim an Der Bergstrasse, Germany), 2016, 12(44): 60526075.

    [8] KWON H, D’AGUANNO G, ALU' A. Optically transparent microwave absorber based on waterbased motheye structures[J]. Optics Express, 2021, 29(6): 91909198.

    [9] DA YI, WEI X C, LIN S S, et al. Transparent microwave absorber based on single layer graphene film[C]//2015 AsiaPacific Microwave Conference (APMC). Nanjing: IEEE, 13.

    [11] HUANG S N, FAN Q, WANG J F, et al. Multispectral metasurface with high optical transparency, low infrared surface emissivity, and wideband microwave absorption[J]. Frontiers in Physics, 2020, 8: 385.

    [12] GAO Z Q, FAN Q, TIAN X X, et al. An optically transparent broadband metamaterial absorber for radarinfrared bistealth[J]. Optical Materials, 2021, 112: 110793.

    [13] ZHANG C, CHENG Q. Opticalliy transparent metamaterial for broadband millimeter wave absorption[C]//2017 10th UKEuropeChina Workshop on Millimetre Waves and Terahertz Technologies (UCMMT). Liverpool: IEEE, 14.

    [14] XU C L, WANG B K, YAN M B, et al. An opticaltransparent metamaterial for highefficiency microwave absorption and low infrared emission[J]. Journal of Physics D: Applied Physics, 2020, 53(13): 135109.

    [15] LIU R, ZHANG B Z, DUAN J P, et al. Composite structurebased transparent ultrabroadband metamaterial absorber with multiapplications[J]. Materials Research Express, 2020, 7(4): 045803.

    [16] HAO J X, ZHANG B Z, JING H H, et al. A transparent ultrabroadband microwave absorber based on flexible multilayer structure[J]. Optical Materials, 2022, 128: 112173.

    [17] LU X R, CHEN J, PENG Z H, et al. An optically transparent and ultrawideband absorber based on multilayer structure[C]//2019 Cross Strait QuadRegional Radio Science and Wireless Technology Conference (CSQRWC). Taiyuan: IEEE, 13.

    [18] LU X R, CHEN J, HUANG Y Q, et al. Design of ultrawideband and transparent absorber based on resistive films[J]. ACES Journal, 2019, 34(5): 765770.

    [19] SHEOKAND H, SINGH G, GHOSH S, et al. An optically transparent broadband microwave absorber using interdigital capacitance[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 113117.

    [20] ZHANG L, SHI Y, YANG J X, et al. Broadband transparent absorber based on indium tin oxidepolyethylene terephthalate film[J]. IEEE Access, 2019,7: 137848137855.

    [21] ZHANG C L, WU X Y, HUANG C, et al. Flexible and transparent microwaveinfrared bistealth structure[J]. Advanced Materials Technologies, 2019, 4(8): 1900063.

    [22] HU X R, WANG Y, WAN Z H, et al. Design and analysis of an optically transparent ultrawideband absorber covering C, X, Ku, K, Ka bands[J]. Optical Materials Express, 2022, 12(4): 1512.

    [23] ZHOU Q, YIN X W, YE F, et al. Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure[J]. Applied Physics A, 2019, 125(2): 18.

    [24] LIU Y, ZHOU J B, CHANG Q, et al. Transparent and electrically tunable electromagnetic wave absorbing metamaterial[J]. Applied Physics Letters, 2022, 120(9): 094101.

    [25] XU C L, WANG B K, YAN M B, et al. An optically transparent sandwich structure for radarinfrared bistealth[J]. Infrared Physics & Technology, 2020, 105: 103108.

    [26] SONG Z C, MIN P P, YANG L, et al. High optical transparent wideband microwave absorber[C]//2021 IEEE 4th International Conference on Electronic Information and Communication Technology. Xi’an: IEEE, 391393.

    [27] TAYDE Y, CHAUDHARY K, SINGH G, et al. An optically transparent and flexible microwave absorber for X and Ku bands application[J]. Microwave and Optical Technology Letters, 2020, 62(5): 18501859.

    [28] LI S Y, ZHAO Y F, JIANG Y Y, et al. An optically transparent broadband metamaterial absorber for C, X and Ku bands[C]//2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC). Fuzhou: IEEE, 13.

    [29] YANG J X, XIAO L, CHEN J F. A transparent broadband absorbing metamaterial based on ITO structure[J]. 2020 IEEE MTTS International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWSAMP), 2020: 13.

    [32] JAROSZEWSKI M, THOMAS S, RANE A V. Advanced materials for electromagnetic shielding[M]. Hoboken: John Wiley & Sons, Inc., 2018.

    [35] LEE I G, YOON S H, LEE J S, et al. Design of wideband radar absorbing material with improved optical transmittance by using printed metalmesh[J]. Electronics Letters, 2016, 52(7): 555557.

    [38] JIANG Z Y, CHEN T Y, ZHAO Y Y, et al. A flexible and visible transparent MXenemesh film for radar stealth in Xband[J]. 2019 Asia Communications and Photonics Conference (ACP), 2019, paper M4A, 305.

    [40] ZHANG J, LI Z F, SHAO L D, et al. Dynamical absorption manipulation in a graphenebased optically transparent and flexible metasurface[J]. Carbon, 2021, 176: 374382.

    [41] JEONG H, TENTZERIS M M, LIM S. Optically transparent metamaterial absorber using inkjet printing technology[J]. Materials, 2019, 12(20): 3406.

    [42] ONN HOO G Y, SOH C B, YANG R B, et al. Optically transparent film of BaTiO3TiO2 and Fe3O4TiO2 on acrylic substrate with water vapor treatment[J]. Procedia Engineering, 2017, 216: 7178.

    [43] SOH C B, NG O T, LIM S W Y. Optically transparent titanium dioxide based coating with antireflectance properties in the GigaHertz frequency spectrum for drones[C]//2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and AsiaPacific International Symposium on Electromagnetic Compatibility (EMC Sapporo/APEMC). Sapporo: IEEE, 14.

    [44] SONG W L, ZHANG Y J, ZHANG K L, et al. Ionic conductive gels for optically manipulatable microwave stealth structures[J]. Advanced Science (Weinheim, BadenWurttemberg, Germany), 2019, 7(2): 1902162.

    [46] SAFARI M, HE Y C, KIM M, et al. Optically and radio frequency (RF) transparent metaglass[J]. Nanophotonics, 2020, 9(12): 38893898.

    [47] LI W W, SHAMIM A. Silver nanowires based transparent, broadband FSS microwave absorber[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). Krakow: IEEE, 13.

    [48] CHOI I, LEE D, LEE D G. Radar absorbing composite structures dispersed with nanoconductive particles[J]. Composite Structures, 2015, 122: 2330.

    [49] JING H B, MA Q, BAI G D, et al. Optically transparent coding metasurfaces based on indium tin oxide films[J]. Journal of Applied Physics, 2018, 124(2): 023102.

    [50] MIN P P, SONG Z C, YANG L, et al. Optically transparent flexible broadband metamaterial absorber based on topology optimization design[J]. Micromachines, 2021, 12(11): 1419.

    [51] LUO Y, HUANG L R, DING J F, et al. Flexible and transparent broadband microwave metasurface absorber based on multipolar interference engineering[J]. Optics Express, 2022, 30(5): 76947707.

    [52] ZHANG C, CHENG Q, YANG J, et al. Broadband metamaterial for optical transparency and microwave absorption[J]. Applied Physics Letters, 2017, 110(14): 143511.

    [53] VENKATARAYALU N V, LEE W W, TAN D, et al. Effect of resistivity of ITO thin film when used in transparent checkerboard surfaces for RCS reduction[C]//2017 Progress in Electromagnetics Research SymposiumFall (PIERSFALL). Singapore: IEEE, 473476.

    [54] LAI S F, GUO Y P, LIU G Y, et al. A highperformance ultrabroadband transparent absorber with a patterned ITO metasurface[J]. IEEE Photonics Journal, 2022, 14(3): 17.

    [55] MA Y, SHI L H, WANG J B, et al. A transparent and flexible metasurface with both low infrared emission and broadband microwave absorption[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 20012010.

    [56] ZHONG S M, WU L J, LIU T J, et al. Transparent transmissionselective radarinfrared bistealth structure[J]. Optics Express, 2018, 26(13): 1646616476.

    [57] DENG R X, LI M L, MUNEER B, et al. Theoretical analysis and design of ultrathin broadband optically transparent microwave metamaterial absorbers[J]. Materials (Basel, Switzerland), 2018, 11(1): 107.

    [58] BHARDWAJ A, SINGH G, SRIVASTAVA K V, et al. Polarizationinsensitive optically transparent microwave metamaterial absorber using a complementary layer[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(1): 163167.

    [59] MA Y, WANG J B, SHI L H, et al. Ultrawideband, optically transparent, and flexible microwave metasurface absorber[J]. Optical Materials Express, 2021, 11(7): 2206.

    [62] HUANG S N, FAN Q, XU C L, et al. Multiple working mechanism metasurface with high optical transparency, low infrared emissivity and microwave reflective reduction[J]. Infrared Physics & Technology, 2020, 111: 103524.

    [63] TAN X X, CHEN J, LI J X. A thin and optically transparent infraredradar compatible stealth structure with low emissivity and broadband absorption[J]. Journal of Physics D: Applied Physics, 2022, 55(7): 075104.

    [64] XIE X Y, LI F F, FANG W, et al. An optically transparent broadband microwave absorber based on resistive frequency selective surface[C]//2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). Chengdu: IEEE, 13.

    [66] YUAN Q, JIANG J M, LI Y F, et al. The compatible method of designing the transparent ultrabroadband radar absorber with low infrared emissivity[J]. Infrared Physics & Technology, 2022, 123: 104114.

    [67] GAO Z Q, XU C L, TIAN X X, et al. Multifunctional ultrathin metasurface with low infrared emissivity, microwave absorption and high optical transmission[J]. Optics Communications, 2021, 500: 127327.

    [68] MENG F G, LI H, FAN D G, et al. Transmittingabsorbing material based on resistive metasurface[J]. AIP Advances, 2018, 8(7): 075008.

    [70] GOGOI D J, BHATTACHARYYA N S. Microwave metamaterial absorber based on aqueous electrolyte solution for Xband application[J]. Journal of Applied Physics, 2019, 125(12): 125107.

    [71] PANG Y Q, WANG J F, CHENG Q, et al. Thermally tunable watersubstrate broadband metamaterial absorbers[J]. Applied Physics Letters, 2017, 110(10): 104103.

    [72] YOO Y J, JU S, PARK S Y, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets[J]. Scientific Reports, 2015, 5: 14018.

    [73] PANG Y Q, SHEN Y, LI Y F, et al. Waterbased metamaterial absorbers for optical transparency and broadband microwave absorption[J]. Journal of Applied Physics, 2018, 123(15): 155106.

    [74] ZHANG Y Q, DONG H X, MOU N L, et al. Tunable and transparent broadband metamaterial absorber with waterbased substrate for optical window applications[J]. Nanoscale, 2021, 13(16): 78317837.

    [75] LI H Y, YUAN H, COSTA F, et al. Optically transparent waterbased wideband switchable radar absorber/reflector with low infrared radiation characteristics[J]. Optics Express, 2021, 29(26): 42863.

    [76] SHEN Y, ZHANG J Q, SUI S, et al. Transparent absorptiondiffusionintegrated waterbased alldielectric metasurface for broadband backward scattering reduction[J]. Journal of Physics D: Applied Physics, 2018, 51(48): 485301.

    SHI Xiaofei, HOU Huanran, JIN Yangli, HUANG Youqi, WANG Yanhang, ZU Chengkui. Research Progress of Compatibility Technology of Radar Shielding Stealth and Optical Transparency[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4003
    Download Citation