• Frontiers of Optoelectronics
  • Vol. 3, Issue 1, -1 (2010)
Simon FLEMING* and Honglin AN
Author Affiliations
  • Institute of Photonics and Optical Science, School of Physics, University of Sydney, Sydney, NSW 2006, Australia
  • show less
    DOI: 10.1007/s12200-009-0078-9 Cite this Article
    Simon FLEMING, Honglin AN. Progress in creating second-order optical nonlinearity in silicate glasses and waveguides through thermal poling[J]. Frontiers of Optoelectronics, 2010, 3(1): -1 Copy Citation Text show less
    References

    [1] Myers R A, Mukherjee N, Brueck S R J. Large second-order nonlinearity in poled fused silica. Optics Letters, 1991, 16(22): 1732–1734

    [2] Alley T G, Brueck S R J, Myers R A. Space charge dynamics in thermally poled fused silica. Journal of Non-Crystalline Solids, 1998, 242(2–3): 165–176

    [3] Kazansky P G, Russell P St J. Thermally poled glass: frozen-in electric field or oriented dipoles Optics Communications, 1994, 110(5–6): 611–614

    [4] Fujiwara T, Wong D, Zhao Y, Fleming S, Poole S, Sceats M. Electro-optic modulation in a germanosilicate fibre with UV-excited poling. Electronics Letters, 1995, 31(7): 573–575

    [5] Okada A, Ishii K, Mito K, Sasaki K. Phase-matched secondharmonic generation in novel corona poled glass waveguides. Applied Physics Letters, 1992, 60(23): 2853–2855

    [6] Kazansky P G, Kamal A, Russell P St J. High second order nonlinearities induced in lead silicate glass by electron beam irradiation. Optics Letters, 1993, 18(9): 693–695

    [7] Henry L J, McGrath B V, Alley T G, Kester J J. Optical nonlinearity in fused silica by proton implantation. Journal of the Optical Society of America B: Optical Physics, 1996, 13(5): 827–836

    [8] Alley T G, Brueck S R J. Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass. Optics Letters, 1998, 23(15): 1170–1172

    [9] Margulis W, Laurell F. Interferometric study of poled glass under etching. Optics Letters, 1996, 21(21): 1786–1788

    [10] Kudlinksi A, Quiquempois Y, Lelek M, Zeghlache H, Martinelli G. Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution. Applied Physics Letters, 2003, 83(17): 3623–3625

    [11] An H, Fleming S, Cox G. Visualization of second-order nonlinear layer in thermally poled fused silica glass. Applied Physics Letters, 2004, 85(24): 5819–5821

    [12] Deparis O, Corbari C, Kazansky P G, Sakaguchi K. Enhanced stability of the second-order optical nonlinearity in poled glasses. Applied Physics Letters, 2004, 84(24): 4857–4859

    [13] An H, Fleming S. Second-order optical nonlinearity in thermally poled borosilicate glass. Applied Physics Letters, 2006, 89(18): 181111

    [14] An H, Fleming S. Second-order optical nonlinearity and accompanying near-surface structural modifications in thermally poled soda-lime silicate glasses. Journal of the Optical Society of America B: Optical Physics, 2006, 23(11): 2303–2309

    [15] Wong D, Xu W, Fleming S, Janos M, Lo K-M. Frozen-in electrical field in thermally poled fibers. Optical Fiber Technology, 1999, 5(2): 235–241

    [16] An H, Fleming S. Characterization of a second-order nonlinear layer profile in thermally poled optical fibers with second-harmonic microscopy. Optics Letters, 2005, 30(8): 866–868

    [17] An H, Fleming S. Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers. Applied Physics Letters, 2005, 87(10): 101108

    [18] An H, Fleming S. Overcoming the impeding effect of core-cladding interface on the progression of the second-order nonlinearity in thermally poled optical fibers. Applied Optics, 2006, 45(24): 6212–6217

    [19] An H, Fleming S. Time evolution of the second-order nonlinearity layer in thermally poled optical fiber. Applied Physics Letters, 2006, 89(23): 231105

    [20] An H, Fleming S. Creating large second-order nonlinearity in twinhole optical fibre with core at the centre of the two holes. Electronics Letters, 2007, 43(4): 206–207

    [21] Davis K M, Miura K, Sugimoto N, Hirao K. Writing waveguides in glass with a femtosecond laser. Optics Letters, 1996, 21(21): 1729–1731

    [22] Schaffer C B, Brodeur A, García J F, Mazur E. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Optics Letters, 2001, 26(2): 93–95

    [23] Corbari C, Mills J D, Deparis O, Klappauf B G, Kazansky P G. Thermal poling of glass modified by femtosecond laser irradiation. Applied Physics Letters, 2002, 81(9): 1585–1587

    [24] Li G,Winick K A, Said A A, Dugan M, Bado P.Waveguide electrooptic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling. Optics Letters, 2006, 31(6): 739–741

    [25] An H, Fleming S, McMillen B W, Chen K P, Snoke D. Thermal poling induced second-order nonlinearity in femtosecond lasermodified fused silica. Applied Physics Letters, 2008, 93(6): 061115

    [26] Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials. Applied Physics Letters, 1997, 71(7): 882–884

    Simon FLEMING, Honglin AN. Progress in creating second-order optical nonlinearity in silicate glasses and waveguides through thermal poling[J]. Frontiers of Optoelectronics, 2010, 3(1): -1
    Download Citation