• INFRARED
  • Vol. 46, Issue 4, 42 (2025)
Cheng-tao DONG1, Jing-zhi WU1,2, Yu AN3, and Yan-hong WANG1,2,*
Author Affiliations
  • 1School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
  • 2Shanxi Innovation Center for Intelligent Microwave & Photoelectrics, Taiyuan 030051, China
  • 3Unit 31619 of PLA, Nanjing 210000, China
  • show less
    DOI: 10.3969/j.issn.1672-8785.2025.04.006 Cite this Article
    DONG Cheng-tao, WU Jing-zhi, AN Yu, WANG Yan-hong. Study on Particle Capture Performance of Plasmonic Structures Under Different Parameters[J]. INFRARED, 2025, 46(4): 42 Copy Citation Text show less
    References

    [1] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Optics Letters, 1986, 11(5): 288290.

    [2] Swank D M, Bartoo M L, Knowles A F, et al. Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity [J]. Journal of Biological Chemistry, 2001, 276(18): 1511715124.

    [3] Bustamante C J, Chemla Y R, Liu S, et al. Optical tweezers in single-molecule biophysics [J]. Nature Reviews Methods Primers, 2021, 1(1): 25.

    [4] Watson M L, Brown D L, Stilgoe A B, et al. Rotational optical tweezers for active microrheometry within living cells [J]. Optica, 2022, 9(9): 10661072.

    [5] Chiba H, Kodama K, Okada K, et al. Gap Effect on Electric Field Enhancement and Photothermal Conversion in Gold Nanostructures [J]. Micromachines, 2022, 13(5): 801.

    [6] Blázquez-Castro A. Optical tweezers: Phototoxicity and thermal stress in cells and biomolecules [J]. Micromachines, 2019, 10(8): 507.

    [7] Crozier K B. Quo vadis, plasmonic optical tweezers [J]. Light: Science & Applications, 2019, 8(1): 35.

    [8] Crozier K B. Plasmonic Nanotweezers: What′s Next [J]. ACS Photonics, 2024, 11(2): 321333.

    [9] Liu Z, Kuang T, Xiong W, et al. Self-feedback induced bistability in dual-beam intracavity optical tweezers [J]. Optics Letters, 2021, 46(21): 53285331.

    [10] Kotsifaki D G, Kandyla M, Lagoudakis P G. Plasmon enhanced optical tweezers with gold-coated black silicon [J]. Scientific Reports, 2016, 6(1): 26275.

    [11] Wang Y, Wu J, Moradi S, et al. Generating and detecting high-frequency liquid-based sound resonances with nanoplasmonics [J]. Nano Letters, 2019, 19(10): 70507053.

    [12] Koya A N, Cunha J, Guo T L, et al. Novel plasmonic nanocavities for optical trapping-assisted biosensing applications [J]. Advanced Optical Materials, 2020, 8(7): 1901481.

    [13] Kaushik N K, Kaushik N, Linh N N, et al. Plasma and nanomaterials: Fabrication and biomedical applications [J]. Nanomaterials, 2019, 9(1): 98.

    [14] Gromann S, Friedrich D, Karolak M, et al. Nonclassical optical properties of mesoscopic gold [J]. Physical Review Letters, 2019, 122(24): 246802.

    [15] Shokova M A, Bochenkov V E. Impact of Optical Cavity on Refractive Index Sensitivity of Gold Nanohole Arrays [J]. Biosensors, 2023, 13(12): 1038.

    [16] Novotny L, Hecht B. Principles of Nano-Optics [M]. Cambridge: Cambridge University Press, 2012.

    DONG Cheng-tao, WU Jing-zhi, AN Yu, WANG Yan-hong. Study on Particle Capture Performance of Plasmonic Structures Under Different Parameters[J]. INFRARED, 2025, 46(4): 42
    Download Citation