• Chinese Journal of Lasers
  • Vol. 51, Issue 5, 0501002 (2024)
Wangcheng Gao1, Rui Ma1, Xin Quan1, Yu Chen1, Dianyuan Fan1, and Jun Liu1、2、*
Author Affiliations
  • 1International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 2Key Laboratory of High Power Laser and Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL230874 Cite this Article Set citation alerts
    Wangcheng Gao, Rui Ma, Xin Quan, Yu Chen, Dianyuan Fan, Jun Liu. Hundred‑Watt‑Level Mid‑Infrared Random Fiber Laser Amplifier[J]. Chinese Journal of Lasers, 2024, 51(5): 0501002 Copy Citation Text show less
    References

    [1] Turitsyn S K, Babin S A, El-Taher A E et al. Random distributed feedback fibre laser[J]. Nature Photonics, 4, 231-235(2010).

    [2] Churkin D V, Sugavanam S, Vatnik I D et al. Recent advances in fundamentals and applications of random fiber lasers[J]. Advances in Optics and Photonics, 7, 516-569(2015).

    [3] Gomes A S L, Moura A L, de Araújo C B et al. Recent advances and applications of random lasers and random fiber lasers[J]. Progress in Quantum Electronics, 78, 100343(2021).

    [4] Wang Z H, Yan P, Huang Y S et al. An efficient 4-kW level random fiber laser based on a tandem-pumping scheme[J]. IEEE Photonics Technology Letters, 31, 817-820(2019).

    [5] Zhang H W, Huang L, Song J X et al. Quasi-kilowatt random fiber laser[J]. Optics Letters, 44, 2613-2616(2019).

    [6] Wang Z N, Wu H, Fan M Q et al. High power random fiber laser with short cavity length: theoretical and experimental investigations[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 10-15(2015).

    [7] Vatnik I D, Churkin D V, Podivilov E V et al. High-efficiency generation in a short random fiber laser[J]. Laser Physics Letters, 11, 075101(2014).

    [8] Zhang L, Jiang H W, Yang X Z et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 7, 42611(2017).

    [9] Wu H, Wang W Z, Li Y et al. Difference-frequency generation of random fiber lasers for broadly tunable mid-infrared continuous-wave random lasing generation[J]. Journal of Lightwave Technology, 40, 2965-2970(2022).

    [10] Leandro D, Rota-Rodrigo S, Ardanaz D et al. Narrow-linewidth multi-wavelength random distributed feedback laser[J]. Journal of Lightwave Technology, 33, 3591-3596(2015).

    [11] Zhang L, Wang C, Li Z Y et al. High-efficiency Brillouin random fiber laser using all-polarization maintaining ring cavity[J]. Optics Express, 25, 11306-11314(2017).

    [12] He J R, Song R, Tao Y et al. Supercontinuum generation directly from a random fiber laser based on photonic crystal fiber[J]. Optics Express, 28, 27308-27315(2020).

    [13] Ma R, Zhang W L, Wang S S et al. Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure[J]. Laser Physics Letters, 15, 085111(2018).

    [14] Ma R, Rao Y J, Zhang W L et al. Backward supercontinuum generation excited by random lasing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0901105(2018).

    [15] Fu Y, Zhu R C, Han B et al. 175-km repeaterless BOTDA with hybrid high-order random fiber laser amplification[J]. Journal of Lightwave Technology, 37, 4680-4686(2019).

    [16] Wu H, Han B, Wang Z N et al. Temporal ghost imaging with random fiber lasers[J]. Optics Express, 28, 9957-9964(2020).

    [17] Ma R, Rao Y J, Zhang W L et al. Multimode random fiber laser for speckle-free imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 0900106(2019).

    [18] Wu H, Wang Z N, He Q H et al. Common-cavity ytterbium/Raman random distributed feedback fiber laser[J]. Laser Physics Letters, 14, 065101(2017).

    [19] Ma R, Quan X, Wu H et al. 20 watt-level single transverse mode narrow linewidth and tunable random fiber laser at 1.5 µm band[J]. Optics Express, 30, 28795-28804(2022).

    [20] Quan X, Ma R, Wu H et al. Low threshold and high spectral purity 1.7 μm random fiber laser based on hybrid gain[J]. Optics & Laser Technology, 155, 108410(2022).

    [21] Mingareev I, Weirauch F, Olowinsky A et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 44, 2095-2099(2012).

    [22] Ren X Y, Dai H, Li D T et al. Mid-infrared electro-optic dual-comb spectroscopy with feedforward frequency stepping[J]. Optics Letters, 45, 776-779(2020).

    [23] Hardy L A, Wilson C R, Irby P B et al. Rapid thulium fiber laser lithotripsy at pulse rates up to 500 Hz using a stone basket[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 138-141(2014).

    [24] Hao Q, Zhu G S, Yang S et al. Mid-infrared transmitter and receiver modules for free-space optical communication[J]. Applied Optics, 56, 2260-2264(2017).

    [25] Zhang Z, Shen D Y, Boyland A J et al. High-power Tm-doped fiber distributed-feedback laser at 1943 nm[J]. Optics Letters, 33, 2059-2261(2008).

    [26] Yin K, Zhang B, Xue G H et al. High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm[J]. Optics Express, 22, 19947-19952(2014).

    [27] Li J F, Sun Z Y, Luo H Y et al. Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm[J]. Optics Express, 22, 5387-5399(2014).

    [28] Yin K, Zhu R Z, Zhang B et al. 300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser[J]. Optics Express, 24, 11085-11090(2016).

    [29] Zhang Q, Hou Y B, Wang X et al. 5 W ultra-low-noise 2 µm single-frequency fiber laser for next-generation gravitational wave detectors[J]. Optics Letters, 45, 4911-4914(2020).

    [30] Liu Y Z, Cao C, Xing Y B et al. 406 W narrow-linewidth all-fiber amplifier with Tm-doped fiber fabricated by MCVD[J]. IEEE Photonics Technology Letters, 31, 1779-1782(2019).

    [31] Ma R, Liu J, Fang Z Q et al. Mid-infrared random fiber laser assisted by the passive feedback[J]. Journal of Lightwave Technology, 39, 5089-5095(2021).

    [32] Jin X X, Lou Z K, Zhang H W et al. Random distributed feedback fiber laser at 2.1 μm[J]. Optics Letters, 41, 4923-4926(2016).

    [33] Wu H S, Wang P, Song J X et al. High power tunable mid-infrared optical parametric oscillator enabled by random fiber laser[J]. Optics Express, 26, 6446-6455(2018).

    [34] Wu H, Wang W Z, Hu B et al. Widely tunable continuous-wave visible and mid-infrared light generation based on a dual-wavelength switchable and tunable random Raman fiber laser[J]. Photonics Research, 11, 808-816(2023).

    [35] Tian Y, Yao T F, Zhou P et al. Numerical modeling and optimization of mid-infrared random distributed feedback fiber lasers[J]. Laser Physics, 28, 075104(2018).

    [36] Zhou L W, Hu Y Z, Zheng W L et al. Triple-wavelength thulium-doped fiber random laser based on random fiber grating[J]. Photonics, 10, 355(2023).

    [37] Hu Y Z, Zhu D C, Huang C Q et al. Study on thulium-doped fiber random laser based on random grating[J]. Chinese Journal of Lasers, 50, 0201002(2023).

    [38] Du X Y, Zhang H W, Ma P F et al. Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser[J]. Optics Letters, 40, 5311-5314(2015).

    [39] Wang Z H, Yu W L, Tian J D et al. 5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 57, 6800109(2021).

    Wangcheng Gao, Rui Ma, Xin Quan, Yu Chen, Dianyuan Fan, Jun Liu. Hundred‑Watt‑Level Mid‑Infrared Random Fiber Laser Amplifier[J]. Chinese Journal of Lasers, 2024, 51(5): 0501002
    Download Citation