• Photonics Research
  • Vol. 12, Issue 10, 2401 (2024)
Yang Shi1,2, Yue-De Yang1,2,*, Ting Wang1,2, Hang-Dong Wei1,2..., Jin-Long Xiao1,2, You-Ling Chen1,2 and Yong-Zhen Huang1,2|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.530171 Cite this Article Set citation alerts
    Yang Shi, Yue-De Yang, Ting Wang, Hang-Dong Wei, Jin-Long Xiao, You-Ling Chen, Yong-Zhen Huang, "Dual-comb source with a reconfigurable repetition frequency difference using intracavity Brillouin lasers," Photonics Res. 12, 2401 (2024) Copy Citation Text show less
    References

    [1] Z. Zhu, G. Wu. Dual-comb ranging. Engineering, 4, 772-778(2018).

    [2] M. G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [3] P. Trocha, M. Karpov, D. Ganin. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [4] R. Ma, H. Yu, Q. Ma. Angular velocity measurement with wide range based on dual-comb Sagnac interferometer. Opt. Lett., 47, 730-733(2022).

    [5] B. Xue, H. Zhang, T. Zhao. A traceable high-accuracy velocity measurement by electro-optic dual-comb interferometry. Appl. Sci., 9, 4118(2019).

    [6] G. Millot, S. Pitois, M. Yan. Frequency-agile dual-comb spectroscopy. Nat. Photonics, 10, 27-30(2015).

    [7] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [8] Y. Wang, Z. Wang, X. Wang. Scanning dual-microcomb spectroscopy. Sci. China Phys. Mech. Astron., 65, 294211(2022).

    [9] J. Hayden, M. Geiser, M. Gianella. Mid-infrared dual-comb spectroscopy with quantum cascade lasers. APL Photon., 9, 031101(2024).

    [10] I. Coddington, W. C. Swann, N. R. Newbury. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett., 100, 013902(2008).

    [11] I. Coddington, W. C. Swann, L. Nenadovic. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).

    [12] J. Nürnberg, B. Willenberg, C. R. Phillips. Dual-comb ranging with frequency combs from single cavity free-running laser oscillators. Opt. Express, 29, 24910-24918(2021).

    [13] Z. Guo, T. Liu, J. Peng. Self-started dual-wavelength mode-locking with well-controlled repetition rate difference. J. Lightwave Technol., 39, 3575-3581(2021).

    [14] Y. Nakajima, Y. Hata, K. Minoshima. High-coherence ultra-broadband bidirectional dual-comb fiber laser. Opt. Express, 27, 5931-5944(2019).

    [15] R. Liao, H. Tian, W. Liu. Dual-comb generation from a single laser source: principles and spectroscopic applications towards mid-IR—a review. J. Phys. Photon., 2, 042006(2020).

    [16] J. Yang, X. Zhao, L. Zhang. Single-cavity dual-comb fiber lasers and their applications. Front. Phys., 10, 1070284(2023).

    [17] E. L. Teleanu, V. Duran, V. Torres-Company. Electro-optic dual-comb interferometer for high-speed vibrometry. Opt. Express, 25, 16427-16436(2017).

    [18] G. Wu, S. Zhou, Y. Yang. Dual-comb ranging and its applications. Chin. J. Lasers, 48, 1504002(2021).

    [19] X. Zhao, X. Qu, F. Zhang. Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb. Opt. Lett., 43, 807-810(2018).

    [20] J. Kang, P. Feng, B. Li. Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators. Opt. Express, 26, 24928-24939(2018).

    [21] A. J. Fleisher, Z. Ahmed, T. Herman. Dual electro-optic frequency comb photonic thermometry. Opt. Lett., 48, 2210-2213(2023).

    [22] T. J. Kippenberg, A. L. Gaeta, M. Lipson. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [23] H. Weng, A. A. Afridi, J. Li. Dual-mode microresonators as straightforward access to octave-spanning dissipative Kerr solitons. APL Photon., 7, 006103(2022).

    [24] B. Wang, Z. Yang, X. Zhang. Vernier frequency division with dual-microresonator solitons. Nat. Commun., 11, 3975(2020).

    [25] E. Lucas, G. Lihachev, R. Bouchand. Spatial multiplexing of soliton microcombs. Nat. Photonics, 12, 699-705(2018).

    [26] Y. Xu, M. Erkintalo, Y. Lin. Dual-microcomb generation in a synchronously driven waveguide ring resonator. Opt. Lett., 46, 6002-6005(2021).

    [27] E. Myslivets, B. P. P. Kuo, N. Alic. Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion. Opt. Express, 20, 3331-3344(2012).

    [28] Z. Tong, A. O. J. Wiberg, E. Myslivets. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps. Opt. Express, 20, 17610-17619(2012).

    [29] E. Temprana, V. Ataie, B. P. Kuo. Low-noise parametric frequency comb for continuous C-plus-L-band 16-QAM channels generation. Opt. Express, 22, 6822-6828(2014).

    [30] K. Jia, X. Wang, D. Kwon. Photonic flywheel in a monolithic fiber resonator. Phys. Rev. Lett., 125, 143902(2020).

    [31] Y. Bai, M. Zhang, Q. Shi. Brillouin-Kerr soliton frequency combs in an optical microresonator. Phys. Rev. Lett., 126, 063901(2021).

    [32] G. Lin, J. Tian, T. Sun. Hundredfold increase of stimulated Brillouin-scattering bandwidth in whispering-gallery mode resonators. Photon. Res., 11, 917-924(2023).

    [33] H. Zhang, T. Tan, H. J. Chen. Soliton microcombs multiplexing using intracavity-stimulated Brillouin lasers. Phys. Rev. Lett., 130, 153802(2023).

    [34] X. Zhang, Z. Jia, Y. Huang. Flat-top soliton frequency comb generation through intra-cavity dispersion engineering in a Brillouin laser cavity. J. Lightwave Technol., 41, 1820-1833(2023).

    [35] T. Wang, J. L. Wu, X. C. Zhang. Octave-spanning frequency comb generation based on a dual-mode microcavity laser. Photon. Res., 10, 2107-2114(2022).

    [36] Y. Shi, T. Wang, Y. Z. Hao. Wideband multiwavelength Brillouin fiber laser with switchable channel spacing. Appl. Opt., 62, 2130-2136(2023).

    [37] J. L. Wu, Y. L. Huang, Y. D. Yang. Wideband multiwavelength Brillouin fiber laser based on dual-mode AlGaInAs/InP microcavity lasers. Appl. Opt., 59, 363-369(2020).

    [38] M. Chen, Z. Meng, Y. Zhang. Ultranarrow-linewidth Brillouin/erbium fiber laser based on 45-cm erbium-doped fiber. IEEE Photon. J., 7, 1500606(2015).

    [39] G. Wang, L. Zhan, J. Liu. Watt-level ultrahigh-optical signal-to-noise ratio single-longitudinal-mode tunable Brillouin fiber laser. Opt. Lett., 38, 19-21(2013).

    [40] J. Geng, S. Staines, Z. Wang. Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth. IEEE Photon. Technol. Lett., 18, 1813-1815(2006).

    [41] G. Hu, T. Mizuguchi, X. Zhao. Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser. Sci. Rep., 7, 42082(2017).

    [42] O. Kliebisch, D. C. Heinecke, S. Barbieri. Unambiguous real-time terahertz frequency metrology using dual 10 GHz femtosecond frequency combs. Optica, 5, 1431-1437(2018).

    [43] X. Zhang, J. Zhang, K. Yin. Sub-100 fs all-fiber broadband electro-optic optical frequency comb at 1.5 μm. Opt. Express, 28, 34761-34771(2020).

    [44] G. P. Agrawal. Nonlinear Fiber Optics(2006).

    [45] Y. Huang, Q. Li, J. Han. Temporal soliton and optical frequency comb generation in a Brillouin laser cavity. Optica, 6, 1491-1497(2019).

    [46] Z. Wu, L. Zhan, Q. Shen. Ultrafine optical-frequency tunable Brillouin fiber laser based on fiber strain. Opt. Lett., 36, 3837-3839(2011).

    [47] I. H. Do, D. Kim, D. Jeong. Self-stabilized soliton generation in a microresonator through mode-pulled Brillouin lasing. Opt. Lett., 46, 1772-1775(2021).

    [48] K. Beha, D. C. Cole, P. Del’Haye. Electronic synthesis of light. Optica, 4, 406-411(2017).

    [49] G. Danion, L. Frein, D. Bacquet. Mode-hopping suppression in long Brillouin fiber laser with non-resonant pumping. Opt. Lett., 41, 2362-2365(2016).

    [50] Q. Li, Z. X. Jia, Z. R. Li. Optical frequency combs generated by four-wave mixing in a dual wavelength Brillouin laser cavity. AIP Adv., 7, 075215(2017).

    [51] V. Ataie, E. Myslivets, B. P. P. Kuo. Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping. J. Lightwave Technol., 32, 840-846(2014).

    [52] M. Chen, Z. Meng, J. Wang. Ultra-narrow linewidth measurement based on Voigt profile fitting. Opt. Express, 23, 6803-6808(2015).

    [53] A. Parriaux, K. Hammani, G. Millot. Electro-optic frequency combs. Adv. Opt. Photon., 12, 223-287(2020).

    [54] W. Xu, D. Zhu, S. Pan. Coherent photonic radio frequency channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering. Opt. Eng., 55, 046106(2016).

    [55] A. Choudhary, B. Morrison, I. Aryanfar. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J. Lightwave Technol., 35, 846-854(2017).

    [56] M. Niklés, L. Thévenaz, P. A. Robert. Brillouin gain spectrum characterization in single-mode optical fibers. J. Lightwave Technol., 15, 1842-1851(1997).

    [57] C. Qin, J. Du, T. Tan. Co‐generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photon. Rev., 17, 2200662(2023).

    Yang Shi, Yue-De Yang, Ting Wang, Hang-Dong Wei, Jin-Long Xiao, You-Ling Chen, Yong-Zhen Huang, "Dual-comb source with a reconfigurable repetition frequency difference using intracavity Brillouin lasers," Photonics Res. 12, 2401 (2024)
    Download Citation