[1] HU Shan, ZHANG Yang, YAN Da, et al. Build Sci, 2020, 36: 288-297.
[2] SONG Qiang, ZHANG Peng, BAO Jiuwen, et al. J Chin Ceram Soc, 2021, 49(2): 398-410.
[3] SHAH S N, MO K H, YAP S P, et al. Lightweight foamed concrete as a promising avenue for incorporating waste materials: A review[J]. Resour Conserv Recy, 2021, 164: 105103.
[5] LIU Dianzhong, HE Shuming, LI Ying. Wall Mater Innov Energ Sav Build, 2013(8): 39-41.
[6] KUGLER S, OSSOWICZ P, MALARCZYK-MATUSIAK K, et al. Advances in Rosin-Based Chemicals: The Latest Recipes, Applications and Future Trends[J]. Molecules, 2019, 24(9): 1651.
[7] XU Yanming, MENG Haining, ZUO Liping, et al. Coal Ash, 2016, 28(3): 43-46.
[8] YAN X Y, ZHAI Z L, SONG Z Q, et al. Synthesis and properties of polyester-based polymeric surfactants from diterpenic rosin[J]. Ind Crop Prod, 2017, 108: 371-378.
[9] HE J, LIU G Y, SANG G C, et al. Investigation on foam stability of multi-component composite foaming agent[J]. Constr Build Mater, 2023, 391: 131799.
[10] WU Yonghua, MA Ping, CHEN Chang, et al. New Build Mater, 2017, 44(2): 130-133.
[11] WU C D, NESSET K, MASLIYAH J, et al. Generation and characterization of submicron size bubbles[J]. Adv Colloid Interface Sci, 2012, 179-182: 123-132.
[12] YU X Y, JIANG N, MIAO X Y, et al. Formation of stable aqueous foams on the ethanol layer: Synergistic stabilization of fluorosurfactant and polymers[J]. Colloid Surface A, 2020, 591: 124545.
[13] FEI L, GE F Q, YIN Y J, et al. Photo-responsive foam control base on nonionic azobenzene surfactant as stabilizer[J]. Colloid Surface A, 2019, 560: 366-375.
[14] RANJANI I S, RAMAMURTHY K. Relative assessment of density and stability of foam produced with four synthetic surfactants[J]. Mater Struct, 2010, 43(10): 1317-1325.
[15] CHEN Jing, GAN Gejin, ZHAO Wanqun, et al. Mater Rep, 2014, 28(S1): 291-294.
[16] LI Haoran. Optimization design and performance research of high stability foaming agent and foam concrete[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
[17] WU Wenxiang, XU Jingliang, CUI Maolei. J. Xi'an Shiyou Univ, (Nat Sci Ed.), 2008(3): 72-75, 121-122.
[18] KIM, JIN M, JEONG, et al. Influence of Foaming Agents on the Properties of Foamed Concretes Having Various Densities[J]. J Korea Inst Build Constr, 2012, 12(1): 22-30.
[19] SAMSON G, PHELIPOT-MARDELé A, LANOS C. Thermal and mechanical properties of gypsum-cement foam concrete: Effects of surfactant[J]. Eur J Environ Civ En, 2017, 21(12): 1502-1521.
[20] MANAN H, MANZOOR T. Comparative study on the performance of protein and synthetic-based foaming agents used in foamed concrete[J]. Case Stud Constr Mat, 2021, 14: e00524.
[21] YAN Qiuhui, QIN Zhouhao, LIU Qian, et al. Bull Chin Ceram Soc, 2019, 38(1): 270-275.
[22] PANESAR D K. Cellular concrete properties and the effect of synthetic and protein foaming agents[J]. Constr Build Mater, 2013, 44: 575-584.
[23] FALLIANO D, DOMENICO D D, RICCIARDI G, et al. Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density[J]. Constr Build Mater, 2018, 165: 735-749.
[24] JITCHAIYAPHUM K, SINSIRI T, CHINDAPRASIRT P. Cellular Lightweight Concrete Containing Pozzolan Materials[J]. Procedia Eng, 2011, 14: 1157-1164.
[25] SHI Xingbo, HUO Jichuan, YIN Bing, et al. New Build Mater, 2008(7): 74-77.
[26] BENAZZOUK A, DOUZANE O, MEZREB K, et al. Physico-mechanical properties of aerated cement composites containing shredded rubber waste[J]. Cem Concr Comp, 2006, 28(7): 650-657.
[27] LI Bing, DU Jie, GAO Yufeng, et al. J. Southeast Univ, 2020, 50(4): 651-657.
[28] WANG Cuihua, PAN Zhihua. J. Nanjing Univ Technol, 2006(4): 92-96.
[29] SHI Xingbo, HUO Jichuan, LI Xian, et al. Bull Chin Ceram Soc, 2009, 28(3): 609-612, 623.
[30] HUANG Liang, ZHENG Shihong. J Cent South Univ For Technol., 2005(1): 70-73.
[31] WANG Mei, CHENG Lanying. Fine Chem, 2011, 28(1): 74-80.
[32] RONG Hui, ZHANG Jing, ZHANG Lei, et al. Bull Chin Ceram Soc, 2020, 39(01): 90-95.
[33] SHE W, DU Y, MIAO C W, et al. Application of organic- and nanoparticle-modified foams in foamed concrete: Reinforcement and stabilization mechanisms[J]. Cem Concr Res, 2018, 106: 12-22.
[34] XIAO Hongli, CAI Zhenyun. J. Zhejiang Univ, 2012, 39(5): 606-610.
[35] DING Qi. New Build Mater, 2009, 36(10): 16-18.
[36] KOIZUMI T, KIDO K, KITA K, et al. Foaming Agents for Powder Metallurgy Production of Aluminum Foam[J]. Mater Trans, 2011, 52(4): 728-733.
[37] MA C, CHEN B. Experimental study on the preparation and properties of a novel foamed concrete based on magnesium phosphate cement[J]. Constr Build Mater, 2017, 137: 160-168.
[38] DJON LI NDJOCK B I, BAENLA J, YANNE E, et al. Effects of Al and Fe powders on the formation of foamed cement obtained by phosphoric acid activation of volcanic ash[J]. Mater Lett, 2022, 308: 131147.
[39] LI T, WANG Z, ZHOU T, et al. Preparation and properties of magnesium phosphate cement foam concrete with H2O2 as foaming agent[J]. Constr Build Mater, 2019, 205: 566-573.
[40] Min, HE Zhongze, FANG Xin. New Build Mater, 2017, 44(10): 97-99, 115.
[41] TONG Jiannan, ZHANG Sumin. New Build Mater, 2018, 45(9): 140-143, 157.
[42] DAI Min, LI Xiu, WEI Zheng, et al. New Build Mater, 2015, 42(4): 26-29, 48.
[43] LI Wenbo. Research on the performance of foam concrete foaming agent and the stability modification of foam[D]. Dalian: Dalian University of Technology, 2009.
[44] FU X J, LAI Z Y, LAI X C, et al. Preparation and characteristics of magnesium phosphate cement based porous materials[J]. Constr Build Mater, 2016, 127: 712-723.
[45] GAO He, WANG Lijie. New Build Mater, 2020, 47(2): 137-140.
[46] KUZIELOVá E, PACH L, PALOU M. Effect of activated foaming agent on the foam concrete properties[J]. Constr Build Mater, 2016, 125: 998-1004.
[47] ZHANG Lei, ZHANG Jing, ZHANG Ying, et al. J Build Mater, 2020, 23(3): 589-595.
[48] ZHANG Wenhua, YANG Fenghao, LV Yujing, et al. J Chin Ceram Soc, 2021, 49(10): 2266-2275.
[49] CHEN Geng, CHEN Peixin, LI Jianxin, et al. Guangdong Archit Civ, 2019, 26(3): 28-31.
[50] ZHANG Yan, LI Hui, CHU Huichao, et al. J Funct Mater, 2017, 48(03): 3188-3192, 3201.
[51] SHI Xingxiang, ZHANG Leilei, MAN Liying, et al. China Concr Cem Prod, 2019(11): 57-60.
[52] CHEN Feiyi. Research on preparation and performance of alkali slag foam concrete[D]. Chongqing: Chongqing University, 2021.
[53] WU J D, ZHANG Z R, ZHANG Y, et al. Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends[J]. Constr Build Mater, 2018, 168: 771-779.
[54] CUI Y, WANG D M, ZHAO J H, et al. Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material[J]. J Build Eng, 2018, 20: 21-29.
[55] LIU Xinhao. Preparation of concrete foam agent and study on performance of foam concrete[D]. Chongqing: Chongqing Jiaotong University, 2022.
[56] LI Tian. Research on key influencing factors and preparation of high-performance foam concrete[D]. Chongqing: Chongqing University, 2018.
[57] MA Qiu, YANG Hongjian, YANG Shaoming, et al. New Build Mater, 2018, 45(12): 56-60.
[58] DING Man. Research on waterproof foam concrete[D]. Hunan: Hunan University, 2011.
[59] ZHENG Anran. Research on development and performance of alkali slag foam concrete[D]. Hefei: Hefei University of Technology, 2020.
[60] YANG Liu. Research on preparation and modification of alkali slag foam concrete[D] . Chongqing: Chongqing Jiaotong University, 2022.
[61] SONG Yilun. Research on the influence of admixtures and admixtures on the performance of foam concrete[D]. Chongqing: Chongqing Jiaotong University, 2022.
[62] SHENG Y J, LU S X, JIANG N, et al. Drainage of aqueous film-forming foam stabilized by different foam stabilizers[J]. J Disper Sci Technol, 2018, 39(9): 1266-1273.
[63] ZHU H, CHEN L L, XU J, et al. Experimental study on performance improvement of anionic surfactant foaming agent by xanthan gum[J]. Constr Build Mater, 2020, 230: 116993.
[64] QIU Y Q, ZHANG L J, CHEN Y S, et al. Experimental study on application performance of foamed concrete prepared based on a new composite foaming agent[J]. Adv Mater Sci Eng, 2022: 7217479.
[65] HAJIMOHAMMADI A, NGO T, MENDIS P. Enhancing the strength of pre-made foams for foam concrete applications[J]. Cem Concr Comp, 2018, 87: 164-171.
[66] HOU L, LI J, LU Z Y, et al. Effect of nanoparticles on foaming agent and the foamed concrete[J]. Constr Build Mater, 2019, 227: 116698.
[67] SUN Qian, LI Zhaomin, LI Songyan, et al. China Univ Pet, 2016, 40(6): 101-108.
[68] ZHU Q, ZHOU H L, SONG Y X, et al. Modification and investigation of silica particles as a foam stabilizer[J]. Int J Miner Metall Mater, 2017, 24(2): 208-215.
[69] GUO S Y, WANG W R, JIA Z Q, et al. Nanoparticle-stabilized foam with controllable structure for enhanced foamed concrete[J]. Constr Build Mater, 2023, 362: 129723.
[70] LI G Y, TAN H B, HE X Y, et al. Research on the properties of wet-ground waste limestone powder as foam stabilizer in foamed concrete[J]. Constr Build Mater, 2022, 329: 127203.
[71] XIONG Y L, LI B L, CHEN C, et al. Properties of foamed concrete with Ca(OH)2 as foam stabilizer[J]. Cem Concr Comp, 2021, 118: 103985.
[72] WANG X, HUANG J, DAI S B, et al. Investigation of silica fume as foam cell stabilizer for foamed concrete[J]. Constr Build Mater, 2020, 237: 117514.
[73] SONG N, LI Z H, YI W M, et al. Properties of foam concrete with hydrophobic starch nanoparticles as foam stabilizer[J]. J Build Eng, 2022, 56: 104811.
[74] ZHANG Y S, LIU Q, YE H, et al. Nanoparticles as foam stabilizer: mechanism, control parameters and application in foam flooding for enhanced oil recovery[J]. J Petrol Sci Eng, 2021, 202: 108561.
[75] KR?MER C, AZUBIKE O M, TRETTIN R H F. Reinforced and hardened three-phase-foams[J]. Cem Concr Comp, 2016, 73: 174-184.
[76] XIONG Y, ZHU Y, CHEN C, et al. Effect of nano-alumina modified foaming agents on properties of foamed concrete[J]. Constr Build Mater, 2021, 267: 121045.
[77] SUN Q, LI Z M, WANG J Q, et al. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant[J]. Colloid Surface A, 2015, 471: 54-64.
[78] MA Z Y, ZENG J Y, CHU S Z, et al. Effect of different foam stabilizers on the setting behavior and pore characteristics of CAC-bonded Al2O3 foamed ceramics[J]. Ceram Int, 2023, 49(7): 10574-10579.
[79] LEI Tuanjie, LI Haoran, GENG Fei, et al. New Build Mater, 2013, 40(12): 93-96.
[80] WANG Cuihua. Research on relevant technologies of foam concrete preparation[D]. Nanjing: Nanjing University of Technology, 2006.
[81] YANG Bingru, QU Guangmiao, YANG Xiaoyan. Energy Chem Ind, 2017, 38(6): 54-58.
[82] ZHANG Yunfei, CHEN Yuemin, GUO Zhongguang, et al. Concrete, 2013(5): 141-143.
[83] HU Huimin. Research on preparation and performance optimization of foam concrete, a filling material for mining[D]. Xuzhou: China University of Mining and Technology, 2021.
[84] WANG Ting. Research on volume stability of steam cured foam concrete[D]. Harbin: Harbin Institute of Technology, 2018.
[85] FAN Yuqian. Research on the influence of bamboo fiber on the performance of chemical foamed foam concrete[D]. Jilin: Northeast Electric Power University, 2022.
[86] YANG Ruihuan, XIE Zhengfen, ZHANG Shuo, et al. Cem Eng, 2021(3): 81-83, 92.
[87] WU Zihao. Preparation and strength and thermal conductivity study of ultra-light cement-based composite insulation materials[D]. Beijing: China National Academy of Building Materials Science, 2021.
[88] SUN Saiwei, LIU Yong, CHEN Wei, et al. Concrete, 2020(1): 95-99.
[89] LIANG Kaikang. Research on preparation and performance of alkali activated foam concrete[D]. Tianjin: Tianjin University, 2021.
[90] YANG Wenxiu, ZHAO Qinglin, ZHOU Mingkai, et al. Bull Chin Ceram Soc, 2023, 42(6): 1938-1949.
[91] ZHANG Xu, WANG Wuxiang, YANG Dingyi, et al. China Concr Cem Prod, 2018(7): 63-68.
[92] BAGHERI A, SAMEA S A. Parameters Influencing the Stability of Foamed Concrete[J]. J Mater Civ Eng, 2018, 30(6): 1-7.
[93] ARDHIRA P J, ARDRA R, MANDALA H, et al. Study on fibre reinforced foam concrete-a review[J]. Mater Today Proc, 2023, 3: 551.
[94] ZHANG Jian, YU Peijie. Bull Sci Technol, 2016, 32(10): 68-71.
[95] XIAO J Z, HAO L C, CAO W Z, et al. Influence of recycled powder derived from waste concrete on mechanical and thermal properties of foam concrete[J]. J Build Eng, 2022, 61: 105203.
[96] LI T, HUANG F M, ZHU J, et al. Effect of foaming gas and cement type on the thermal conductivity of foamed concrete[J]. Constr Build Mater, 2020, 231: 117197.
[97] DULAIMY A, THOM H, DAWSON AR. The use of additives to enhance properties of pre-formed foamed concrete[J]. IACSIT Int J Eng Technol, 2015, 7(4): 286-293.
[98] CHEN Yimin, HE Xingyang, LI Yongxin, et al. Mater Rep, 2006(8): 28-31.
[99] WU Liman, SUN Yong, ZHANG Xiaoli, et al. Bull Chin Ceram Soc, 2014, 33(9): 2387-2392.
[100] SHE W, DU Y, ZHAO G T, et al. Influence of coarse fly ash on the performance of foam concrete and its application in high-speed railway roadbeds[J]. Constr Build Mater, 2018, 170: 153-166.
[101] LIU C, LUO J L, LI Q Y, et al. Effect of Fly Ash on Bonding and Shrinking Behaviors of High-Belite Sulphoaluminate Cement-Based Foam Concrete[J]. J Mater Civ Eng, 2021, 33(11): 3956.
[102] XIAO M, LI F X, YANG P F, et al. Influence of slurry characteristics on the bubble stability in foamed concrete[J]. J Build Eng, 2023, 71: 106500.
[103] SONG Q, BAO J W, XUE S B, et al. Collaborative disposal of multisource solid waste: Influence of an admixture on the properties, pore structure and durability of foam concrete[J]. J Mater Res Technol , 2021, 14: 1778-1790.
[104] LI F P, LIU L S, YANG Z M, et al. Physical and mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste Granulated Blast Furnace Slag (GBFS) and functionalized Multi-Walled Carbon Nanotubes (MWCNTs)[J]. J Hazard Mater, 2021, 401: 123339.
[105] LIU S J, ZHU K M, CUI S, et al. A novel building material with low thermal conductivity: rapid synthesis of foam concrete reinforced silica aerogel and energy performance simulation[J]. Energy Build, 2018, 177: 385-393.
[106] G?K?E H S, HATUNGIMANA D, RAMYAR K. Effect of fly ash and silica fume on hardened properties of foam concrete[J]. Constr Build Mater, 2019, 194: 1-11.
[107] YAN Changyu. Research on preparation and performance of fly ash foam concrete[D]. Ningxia: Ningxia University, 2022.
[108] YANG Jun, WANG Wuxiang, YANG Shenghui, et al. Concrete, 2022(12): 168-171.
[109] ISLAM M M U, MO K H, ALENGARAM U J, et al. Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash[J]. J Cleaner Prod, 2016, 115: 307-314.
[110] MAHMOUD A A, JOHNSON A U, SUMIANI Y, et al. Synthesis of sustainable lightweight foamed concrete using palm oil fuel ash as a cement replacement material[J]. J Build Eng, 2021, 35: 102047.
[111] HAO Shuyan, WAN Xiaomei, HAN Xukang, et al. Concrete, 2021(8): 91-95.
[112] ZHANG Dingwen, WANG Anhui. J Archit Civ Eng, 2020, 37(5): 13-38.
[113] YU Y M, PERUMAL P, CORFE I J, et al. Combined granulation-alkali activation-direct foaming process: A novel route to porous geopolymer granules with enhanced adsorption properties[J]. Mater Des, 2023, 227: 111781.
[114] HAO Y F, YANG G Z, LIANG K K. Development of fly ash and slag based high-strength alkali-activated foam concrete[J]. Cem Concr Comp, 2022, 128: 104447.
[115] FENG W P, JIN Y, ZHENG D P, et al. Synergic effect of compositions and processing method on the performance of high strength alkali activated slag foam[J]. Constr Build Mater, 2022, 352: 128991.
[116] PASUPATHY K, RAMAKRISHNAN S, SANJAYAN J. Formulating eco-friendly geopolymer foam concrete by alkali-activation of ground brick waste[J]. J Cleaner Prod, 2021, 325: 129180.
[117] LIU X, LU M Y, SHENG K, et al. Development of new material for geopolymer lightweight cellular concrete and its cementing mechanism[J]. Constr Build Mater, 2023, 367: 130253.
[118] HE J, GAO Q, SONG X F, et al. Effect of foaming agent on physical and mechanical properties of alkali-activated slag foamed concrete[J]. Constr Build Mater, 2019, 226: 280-287.
[119] JIANG S, XU J X, SONG Y B, et al. Alkali-activated fly ash foam concrete with yellow river silt: Physico-mechanical and structural properties[J]. Constr Build Mater, 2023, 373: 130879.
[120] LIU C X, WANG C B, XIAO W, et al. Study on the performance of calcined spent waterglass foundry sand in alkali-activated foam concrete[J]. Constr Build Mater, 2023, 378: 131151.
[121] PUERTAS F, PALACIOS M, VáZQUEZ T. Carbonation process of alkali-activated slag mortars[J]. J Mater Sci, 2006, 41(10): 3071-3082.
[122] SU L J, FU G S, LIANG B, et al. Working performance and microscopic mechanistic analyses of municipal solid waste incineration (MSWI) fly ash-based self-foaming filling materials[J]. Constr Build Mater, 2022, 361: 129647.
[123] WANG R, WANG J S, SONG Q C. Optimized Preparation of Porous Coal Gangue-Based Geopolymer and Quantitative Analysis of Pore Structure[J]. Buildings, 2022, 12(12): 2079.
[124] AREZKI S, MEHENA O, SALIM K. Valorization of a Steel Industrial Co-Product for the Development of Alkali-Activated Materials: Effect of Curing Environments[J]. Adv Mater Sci, 2023, 23(2): 45-63.
[125] LI C B, LI X T, GUAN D, et al. Study on influence factors of compressive strength of low density backfill foamed concrete used in natural gas pipeline tunnel[J]. Sustainability, 2022, 14(14): 8333.
[126] HAN S Y, ZHANG P H, ZHANG H H, et al. Physical and mechanical properties of foamed concrete with recycled concrete aggregates[J]. Front Mater, 2023, 10: 1106243.
[127] ZHANG S L, QI X Q, GUO S Y, et al. A systematic research on foamed concrete: The effects of foam content, fly ash, slag, silica fume and water-to-binder ratio[J]. Constr Build Mater, 2022, 339: 127683.
[128] LI C B, LI X T, LI S, et al. Effect of Maintenance and Water-Cement Ratio on Foamed Concrete Shrinkage Cracking[J]. Polymers, 2022, 14(13): 2703.
[129] LIU Dehui. China Concr Cem Prod, 2018(9): 81-84.
[130] TANG R, WEI Q S, ZHANG K, et al. Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete[J]. J Build Eng, 2022, 57: 104948.
[131] HIMANSHU M, DHANYA S, MINI KM. Study on durability and hardened state properties of sugarcane bagasse fiber reinforced foam concrete[J]. Mater Today Proc, 2020, 46: 4782-4787.
[132] RAJ B, SATHYAN D, MADHAVAN M K, et al. Mechanical and durability properties of hybrid fiber reinforced foam concrete[J]. Constr Build Mater, 2020, 245: 118373.
[133] LI Tian, WANG Zhi, ZHOU Taotao. Concrete, 2019(1): 26-29.
[134] ZHANG Lei, YANG Dingyi. Concrete, 2005(8): 44-48.
[135] HU Chi, LI Hui, LIU Zhongwei, et al. New Build Mater, 2017, 44(10): 92-96.
[136] ZHANG D F, JU B Z, ZHANG S F, et al. The study on the dispersing mechanism of starch sulfonate as a water-reducing agent for cement[J]. Carbohydr Polym, 2007, 70(4): 363-368.
[137] PAN Z H, LI H Z, LIU W Q. Preparation and characterization of super low density foamed concrete from Portland cement and admixtures[J]. Constr Build Mater, 2014, 72: 256-261.
[138] OWAMAH H I, IKPESENI SC, DHARNARAJ R, et al. Influence of Diethanolamine on the Properties of Concrete, Corrosion Rate of Rebar and Renewable Energy Generation[J]. Arabian J Sci Eng, 2021, 46(11): 1-10.
[139] XIE H, LIU X, ZHENG Y S, et al. Effect of complexation of alkanolamine in accelerators on the initial stage of cement hydration[J]. Constr Build Mater, 2023, 393: 132105.
[140] GIZEM H S, ALI M, SULEYMAN O, et al. Utilization of high-range water reducing admixture having air-entraining agents in cementitious systems[J]. J Build Eng, 2023, 64: 105565.
[141] MENG Liqiang, CHEN Jun, LIU Guiping, et al. Build Constr, 2020, 42(5): 780-782.
[142] WANG Zhansheng. China High New Technol, 2021(12): 95-96.
[143] ZHAO Wusheng, CHEN Weizhong, TAN Xianjun, et al. Chin J Geotech Eng, 2013, 35(8): 1544-1552.
[144] MIAO Zhongyue. Experimental and numerical simulation study on dynamic compressive strength of foam concrete[D]. Tianjin: Tianjin University, 2021.
[145] FENG Jun. Constr Technol, 2018, 47(21): 132-134, 160.
[146] ZHENG Xiaofang. Constr Qual, 2013, 31(7): 77-78.
[147] TIAN Tao. Sichuan Build Mater, 2023, 49(2): 18-19.
[148] LI Yangrui. Research on preparation and properties of magnesium based salt fly ash foam concrete[D]. Inner Mongolia: Inner Mongolia University of Technology, 2021.
[149] WANG Wuxiang, LIU Ning, LUO Shuanding. China Concr Cem Prod, 2002(4): 12-15.
[150] DENG Honggui, CHENG Cheng. Min Technol, 1992(34): 18.