• Chinese Journal of Lasers
  • Vol. 49, Issue 14, 1402803 (2022)
Ping Hu1、*, Lin Ai2, Ziyan Qiu2, Junjie Zuo2, Sheng Liu1、3, Yang Liu3, Zhixin Peng1, and Changhui Song4
Author Affiliations
  • 1School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, Hubei, China
  • 2Hongyi Honor College, Wuhan University, Wuhan 430072, Hubei, China
  • 3The Institute of Technological Sciences, Wuhan University, Wuhan 430072, Hubei, China
  • 4School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
  • show less
    DOI: 10.3788/CJL202249.1402803 Cite this Article Set citation alerts
    Ping Hu, Lin Ai, Ziyan Qiu, Junjie Zuo, Sheng Liu, Yang Liu, Zhixin Peng, Changhui Song. Laser Ultrasonic Nondestructive Testing on Metal Additive Manufacturing Components[J]. Chinese Journal of Lasers, 2022, 49(14): 1402803 Copy Citation Text show less
    References

    [1] Zhu Z L, Zhao K, Guo L J et al. Application and development trend of additive manufacturing technology of large-scale metal component in aerospace manufacturing[J]. Electric Welding Machine, 50, 1-14, 124(2020).

    [2] Feng S Y, Zhang H M. Research progress of selective laser sintering[J]. Jiangxi Chemical Industry, 56-57(2020).

    [3] Wang F, Li K, Cao C L et al. Research status and prospect of selective laser sintering molding materials[J]. Foundry Technology, 38, 1258-1262(2017).

    [4] Wu F, Zou Y D, Lin W S. Application of selective laser sintering technology and research progress in post processing of its sintered parts[J]. Journal of Synthetic Crystals, 45, 2666-2673(2016).

    [5] Li H X, Gong S L, Sun F et al. Development and application of laser additive manufacturing for metal component[J]. Aeronautical Manufacturing Technology, 55, 26-31(2012).

    [6] Zhou Y C, Zhao Y. Tensile performance of 316L stainless steel by additive manufacturing[J]. China Civil Engineering Journal, 53, 26-35(2020).

    [7] Yang Y H. Analysis of classifications and characteristic of additive manufacturing (3D print)[J]. Advances in Aeronautical Science and Engineering, 10, 309-318(2019).

    [8] Ma C, Liu Y H, Ji R J et al. Review of wire and arc additive manufacturing: technology genre and prospect[J]. Electromachining & Mould, 1-11(2020).

    [9] Koester L, Taheri H, Bigelow T et al. Nondestructive testing for metal parts fabricated using powder-based additive manufacturing[J]. Materials Evaluation, 76, 514-524(2018).

    [10] Ng G K L, Jarfors A E W, Bi G et al. Porosity formation and gas bubble retention in laser metal deposition[J]. Applied Physics A, 97, 641-649(2009).

    [11] Ahn S H, Montero M, Odell D et al. Anisotropic material properties of fused deposition modeling ABS[J]. Rapid Prototyping Journal, 8, 248-257(2002).

    [12] Zhang X L, Jiang Y C, Zhang X C et al. Research on industrial CT detection method of laser selective melting additive manufacturing components[J]. Nondestructive Testing Technology, 44, 34-36(2020).

    [13] Zhang X C, Zhang X L, Liu Z et al. Application of industrial CT technology for additive manufacturing product by selective laser melting[J]. Nondestructive Testing, 41, 52-57(2019).

    [14] Sun C J, Zhao Y H, Wang Z G et al. Development status and trend research of nondestructive testing for additive new-conceptual structure[J]. Vacuum, 56, 65-70(2019).

    [15] Roy M, Walton K, Harley J B et al. Ultrasonic evaluation of segmental variability in additively manufactured metal components[C], 18326785(2018).

    [16] Qiu J H, Zhang C, Ji H L et al. Non-destructive testing for aerospace composite structures using laser ultrasonic technique[J]. Aeronautical Manufacturing Technology, 63, 14-23(2020).

    [17] Yuan J X, Qin X P, Zhang J P et al. Depth detection of internal defects for arc additive products based on laser ultrasound[J]. China Mechanical Engineering, 32, 65-73(2021).

    [18] Zhou X G, He C F. Laser ultrasonic techniques for non-destructive testing[J]. Journal of Experimental Mechanics, 11, 87-94(1996).

    [19] Karthik N, Gu H, Pal D et al. High frequency ultrasonic non destructive evaluation of additively manufactured components[EB/OL]. http://utw10945.utweb.utexas.edu/Manuscripts/2013/2013-25-Karthik.pdf

    [20] Wu R[D]. Study on surface microcrack detection based on laser ultrasound(2020).

    [21] White R M. Elastic wave generation by electron bombardment or electromagnetic wave absorption[J]. Journal of Applied Physics, 34, 2123-2124(1963).

    [22] Aakaryan A, Prolhorov A M, Chanturcy G F et al. The effects of a laser beam in a liquid[J]. Soviet Physics-Journal of Experimental and Theoretical Physics, 17, 1463-1465(1963).

    [23] Rose L R F. Point-source representation for laser-generated ultrasound[J]. The Journal of the Acoustical Society of America, 75, 723-732(1984).

    [24] McDonald F A. Practical quantitative theory of photoacoustic pulse generation[J]. Applied Physics Letters, 54, 1504-1506(1989).

    [25] McDonald F A. On the precursor in laser-generated ultrasound waveforms in metals[J]. Applied Physics Letters, 56, 230-232(1990).

    [26] Lei W, Chen J, Zhang S Y. Mechanisms of laser-generated of ultrasonic waves using an array of laser sources[J]. Journal of Physics D, 957-964(1995).

    [27] Murray T W, Deaton J B,, Wagner J W. Experimental evaluation of enhanced generation of ultrasonic waves using an array of laser sources[J]. Ultrasonics, 34, 69-77(1996).

    [28] Royer D, Chenu C. Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source[J]. Ultrasonics, 38, 891-895(2000).

    [29] Xu B Q, Ni X W, Shen Z H et al. Numerical simulation of laser-generated ultrasonic by finite element method in the plate material[J]. Chinese Journal of Lasers, 31, 621-625(2004).

    [30] Chen X D, Yang J, Zhao X D et al. The status and development of finite element method[J]. Manufacture Information Engineering of China, 39, 6-8, 12(2010).

    [31] Moser F, Jacobs L J, Qu J M. Modeling elastic wave propagation in waveguides with the finite element method[J]. NDT & E International, 32, 225-234(1999).

    [32] Zerwer A, Polak M A, Santamarina J C. Rayleigh wave propagation for the detection of near surface discontinuities: finite element modeling[J]. Journal of Nondestructive Evaluation, 22, 39-52(2003).

    [33] Hassan W, Veronesi W. Finite element analysis of Rayleigh wave interaction with finite-size, surface-breaking cracks[J]. Ultrasonics, 41, 41-52(2003).

    [34] Xu B Q, Shen Z H, Wang J J et al. Thermoelastic finite element modeling of laser generation ultrasound[J]. Journal of Applied Physics, 99, 033508(2006).

    [35] Shen Z H, Xu B Q, Ni X W et al. Numerical simulation of pulsed laser induced ultrasound in monolayer and double layer materials[J]. Chinese Journal of Lasers, 31, 1275-1280(2004).

    [36] Jeong H. Finite element analysis of laser-generated ultrasound for characterizing surface-breaking cracks[J]. Journal of Mechanical Science and Technology, 19, 1116-1122(2005).

    [37] Ni C Y, Shi Y F, Shen Z H et al. Numerical simulation on near-field surface acoustic waves induced by laser line source[J]. Infrared and Laser Engineering, 36, 324-327(2007).

    [38] Guan J F, Shen Z H, Ni X W et al. Numerical study on depth evaluation of micro-surface crack by laser generated ultrasonic waves[J]. Journal of Test and Measurement Technology, 24, 15-21(2010).

    [39] Pei C X, Demachi K, Zhu H T et al. Inspection of cracks using laser-induced ultrasound with shadow method: modeling and validation[J]. Optics & Laser Technology, 44, 860-865(2012).

    [40] Hernandez-Valle F, Dutton B, Edwards R S. Laser ultrasonic characterisation of branched surface-breaking defects[J]. NDT & E International, 68, 113-119(2014).

    [41] Liu W Y, Hong J W. Modeling of three-dimensional Lamb wave propagation excited by laser pulses[J]. Ultrasonics, 55, 113-122(2015).

    [42] Zhou Z G, Zhang K S, Zhou J H et al. Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks[J]. Optics & Laser Technology, 73, 173-178(2015).

    [43] Liu P P, Nazirah A W, Sohn H. Numerical simulation of damage detection using laser-generated ultrasound[J]. Ultrasonics, 69, 248-258(2016).

    [44] Guo H, Zheng B, Liu H. Numerical simulation and experimental research on interaction of micro-defects and laser ultrasonic signal[J]. Optics & Laser Technology, 96, 58-64(2017).

    [45] Zhang L D, Li F G. The application of laser ultrasonic technique in NDT[J]. Journal of Ordnance Equipment Engineering, 21, 33-36(2000).

    [46] Du L T, Liu S P. Laser ultrasound testing technology[J]. Nondestructive Testing Technology, 35, 1-4(2011).

    [47] Millon C, Vanhoye A, Obaton A F et al. Development of laser ultrasonics inspection for online monitoring of additive manufacturing[J]. Welding in the World, 62, 653-661(2018).

    [48] Zhang S Y. Laser ultrasonic and nondestructive evaluation of materials[J]. Applied Acoustics, 11, 1-6(1992).

    [49] Yan G, Xu X D, Shen Z H et al. An experimental method of the laser-generated ultrasonic waves for detecting the surface-breaking defects[J]. Journal of Optoelectronics·Laser, 17, 107-110(2006).

    [50] Yan W. Application of fiber Fizeau interferometer in detection of laser-induced surface acoustic wave[J]. Experimental Technology and Management, 25, 63-66(2008).

    [51] Si G L, Zhang Z W. Laser ultrasonic displacement detection technology based on heterodyne interference[J]. Chinese Journal of Electron Devices, 39, 124-127(2016).

    [52] Pierce R, Ume C, Jarzynski J. Temporal modulation of a laser source for the generation of ultrasonic waves[J]. Ultrasonics, 33, 133-137(1995).

    [53] di Scalea F L, Green R E. High-sensitivity laser-based ultrasonic C-scan system for materials inspection[J]. Experimental Mechanics, 39, 329-334(1999).

    [54] Nadeau A, Martin F, Blouin A et al. Application of laser-ultrasonics to the non-contact, pulse echo measurement of the thickness of micron thin metallic coatings[C], 894, 225-232(2007).

    [55] Nagata Y, Yamada H, Hamada N et al. Development of asystem to measure recrystallization ratio of plate steel using laser-based ultrasonics[C], 894, 1676-1683(2007).

    [56] Ding Y S, Yang S X, Gan C B. Detecting features of defect metal based on laser ultrasonic technique[J]. Journal of Vibration and Shock, 34, 33-37(2015).

    [57] Feng W W, Pan Y D, Ru D H et al. Residual stress in cast iron brake disc measured by laser-generated surface wave technique[J]. Materials for Mechanical Engineering, 42, 78-82(2018).

    [58] Li J Y, Shen Z H, Ni X W et al. Laser-ultrasonic non-destructive detection based on synthetic aperture focusing technique[J]. Chinese Journal of Lasers, 45, 0904003(2018).

    [59] Sun K H, Shen Z H, Li Y L et al. Inspection of material internal defects using double shadow method based on laser ultrasonic reflected shear waves[J]. Chinese Journal of Lasers, 45, 0710001(2018).

    [60] Nomura K, Otaki S, Kita R et al. In-situ detection of weld defect during the welding process by laser ultrasonic technique[J]. Proceedings of Meetings on Acoustics, 38, 030016(2019).

    [61] Pan Z X, Song J K, Gao Y K. Residual stress measurement of GH4169 superalloy based on laser ultrasonic method[J]. Chinese Quarterly of Mechanics, 42, 98-107(2021).

    [62] Gu Y H, Zhang Z Z, Gao X H et al. Application of nondestructive detection of aluminum using laser ultrasonic technology and EMAT method[J]. Chinese Journal of Lasers, 47, 0504002(2020).

    [63] Ji B P, Cao J S, Huang G et al. A new detection method for steel strip distribution based on laser ultrasonic guided waves[J]. Chinese Journal of Lasers, 49, 0604001(2022).

    [64] Chen C, Ying K N, Liu N et al. Application of phase shift migration method in laser ultrasonic SAFT[J]. Chinese Journal of Lasers, 48, 0304001(2021).

    [65] Manzo A J, Helvajian H. Pulsed laser ultrasonic excitation and heterodyne detection for in situ process control in laser 3D manufacturing[J]. Journal of Laser Applications, 29, 012012(2017).

    [66] Klein M, Sears J. Laser ultrasonic inspection of laser cladded 316LSS and TI-6-4[J]. International Congress on Applications of Lasers & Electro-Optics, 1006(2004).

    [67] Pantano A, Cerniglia D. Simulation of laser-generated ultrasonic wave propagation in solid media and air with application to NDE[J]. Applied Physics A, 98, 327-336(2009).

    [68] Cerniglia D, Scafidi M, Pantano A et al. Laser ultrasonic technique for laser powder deposition inspection[C](2013).

    [69] Cerniglia D, Scafidi M, Pantano A et al. Inspection of additive-manufactured layered components[J]. Ultrasonics, 62, 292-298(2015).

    [70] Chen S, Wang H T, Zhao J Y et al. Application in surface defect inspection of additive manufactured based on laser ultrasonic surface wave[C], 266-270(2018).

    [71] Bakre C, Hassanian M, Lissenden C. Influence of surface roughness from additive manufacturing on laser ultrasonics measurements[C], 2102, 020009(2019).

    [72] Bigelow T A, Schneider B, Taheri H. Detection of pores in additive manufactured parts by near field response of laser-induced ultrasound[C], 2102, 070002(2019).

    [73] Davis G, Rajagopal P, Balasubramaniam K et al. Laser generation of narrowband lamb waves for in situ inspection of additively manufactured metal components[C], 2102, 070001(2019).

    [74] Yu J, Zhang D Q, Li H et al. Detection of internal holes in additive manufactured Ti-6Al-4V part using laser ultrasonic testing[J]. Applied Sciences, 10, 365(2020).

    [75] Zhang J, Wu J F, Zhao X et al. Laser ultrasonic imaging for defect detection on metal additive manufacturing components with rough surfaces[J]. Applied Optics, 59, 10380-10388(2020).

    [76] Zhan Y, Liu C, Zhang J J et al. Measurement of residual stress in laser additive manufacturing TC4 titanium alloy with the laser ultrasonic technique[J]. Materials Science and Engineering A, 762, 138093(2019).

    [77] Lévesque D, Bescond C, Cojocaru C. Laser-ultrasonic inspection of cold spray additive manufacturing components[J]. AIP Conference Proceedings, 2102, 020026(2019).

    [78] Ma Y Y, Hu X J, Hu Z L et al. Simultaneous compositional and grain size measurements using laser opto-ultrasonic dual detection for additive manufacturing[J]. Materials, 13, 2404(2020).

    [79] Ma Y Y, Hu Z L, Tang Y et al. Laser opto-ultrasonic dual detection for simultaneous compositional, structural, and stress analyses for wire+arc additive manufacturing[J]. Additive Manufacturing, 31, 100956(2020).

    [80] Yang C H, Jeyaprakash N, Chan C K. Inhomogeneous mechanical properties in additively manufactured parts characterized by nondestructive laser ultrasound technique[J]. NDT & E International, 116, 102340(2020).

    [81] Zhan Y, Xu H X, Du W Q et al. Research on the influence of heat treatment on residual stress of TC4 alloy produced by laser additive manufacturing based on laser ultrasonic technique[J]. Ultrasonics, 115, 106466(2021).

    [82] Mani M, Lane B M, Donmez M A et al. A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes[J]. International Journal of Production Research, 55, 1400-1418(2017).

    [83] Chua Z Y, Ahn I H, Moon S K. Process monitoring and inspection systems in metal additive manufacturing: status and applications[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 235-245(2017).

    Ping Hu, Lin Ai, Ziyan Qiu, Junjie Zuo, Sheng Liu, Yang Liu, Zhixin Peng, Changhui Song. Laser Ultrasonic Nondestructive Testing on Metal Additive Manufacturing Components[J]. Chinese Journal of Lasers, 2022, 49(14): 1402803
    Download Citation