• Chinese Journal of Lasers
  • Vol. 48, Issue 2, 202001 (2021)
Chen Nianke1, Huang Yuting1, Li Xianbin1、*, and Sun Hongbo1、2
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
  • 2State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.0202001 Cite this Article Set citation alerts
    Chen Nianke, Huang Yuting, Li Xianbin, Sun Hongbo. Recent Progress on Ultrafast Laser-Induced Solid Nonthermal Phase Transitions and Atomic Mechanisms[J]. Chinese Journal of Lasers, 2021, 48(2): 202001 Copy Citation Text show less
    References

    [1] et alO-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment[J]. Light, Science & Applications, 9, 41(2020). http://www.nature.com/articles/s41377-020-0275-2

    [2] et alPlasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing[J]. Light: Science & Applications, 6, e17112(2017). http://www.nature.com/articles/lsa2017112

    [3] et alMechanically robust stretchable organic optoelectronic devices built using a simple and universal stencil-pattern transferring technology[J]. Light, Science & Applications, 7, 35(2018).

    [4] et alUltrafast laser-induced black silicon, from micro-nanostructuring, infrared absorption mechanism, to high performance detecting devices[J]. Materials Today Nano, 11, 100078(2020).

    [5] Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 46, 0902002(2019).

    [6] et alResearch and application of massive micropores water-assisted picosecond laser processing technology[J]. Chinese Journal of Lasers, 47, 0302002(2020).

    [7] et alStudy of photo-induced phase transition of VO2 films with high modulation by time-domain spectroscopy[J]. Chinese Journal of Lasers, 41, 0111001(2014).

    [8] Ultrafast time-resolved spectroscopy and its applications in micro-nano photonics[J]. Physics, 44, 349-355(2015).

    [9] et alAll-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 569, 208-214(2019). http://www.nature.com/articles/s41586-019-1157-8

    [10] et alIntegrated all-photonic non-volatile multi-level memory[J]. Nature Photonics, 9, 725-732(2015).

    [11] et alArithmetic and biologically-inspired computing using phase-change materials[J]. Advanced Materials, 23, 3408-3413(2011).

    [12] et alEffects of temperature field and CeO2/TiO2 on material phase transition in laser cladding[J]. Chinese Journal of Lasers, 46, 0802006(2019).

    [13] Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [14] Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 1, 217-224(2002).

    [15] et alExperiment on ablation threshold of single crystal diamond produced by femtosecond laser processing[J]. Chinese Journal of Lasers, 46, 0402001(2019).

    [16] [J]. Betz G. Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons, the two-temperature model. Applied Surface Science, 197/198, 145-155(2002).

    [17] Nonthermal pulsed laser annealing of Si; plasma annealing[J]. Physics Letters A, 74, 422-426(1979).

    [18] Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma[J]. Physical Review B, 42, 7163-7173(1990).

    [19] et alNon-thermal melting in semiconductors measured at femtosecond resolution[J]. Nature, 410, 65-68(2001).

    [20] The physics of ultra-short laser interaction with solids at non-relativistic intensities[J]. Physics Reports, 508, 91-243(2011).

    [21] et alPhase-change superlattice materials toward low power consumption and high density data storage: microscopic picture, working principles, and optimization[J]. Advanced Functional Materials, 28, 1803380(2018).

    [22] Phase-change materials for rewriteable data storage[J]. Nature Materials, 6, 824-832(2007). http://www.nature.com/articles/nmat2009

    [23] et alRole of electronic excitation in phase-change memory materials: a brief review[J]. Physica Status Solidi B, 249, 1861-1866(2012).

    [24] et alRole of electronic excitation in the amorphization of Ge-Sb-Te alloys[J]. Physical Review Letters, 107, 015501(2011).

    [25] et alPhotoassisted amorphization of the phase-change memoryalloy Ge2Sb2Te5[J]. Physical Review B, 82, 041203(2010).

    [26] et alUltrafast amorphization in Ge10Sb2Te13 thin film induced by single femtosecond laser pulse[J]. Applied Optics, 49, 3470-3473(2010).

    [27] et alAmorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation[J]. Journal of Applied Physics, 103, 023516(2008).

    [28] et alGiant lattice expansion by quantum stress and universal atomic forces in semiconductors under instant ultrafast laser excitation[J]. Physical Chemistry Chemical Physics, 19, 24735-24741(2017).

    [29] et alSub-nanometre resolution of atomic motion during electronic excitation in phase-change materials[J]. Scientific Reports, 6, 20633(2016). http://europepmc.org/articles/PMC4751541

    [30] et alPicosecond strain dynamics in Ge2Sb2Te5monitored by time-resolved X-ray diffraction[J]. Physical Review B, 90, 094305(2014).

    [31] et alTime-domain separation of optical properties from structural transitions in resonantly bonded materials[J]. Nature Materials, 14, 991-995(2015).

    [32] Nonthermal dynamics of dielectric functions in a resonantly bonded photoexcited material[J]. Advanced Functional Materials, 30, 2002821(2020).

    [33] et alTransient structures and possible limits of data recording in phase-change materials[J]. ACS Nano, 9, 6728-6737(2015).

    [34] et alInitial atomic motion immediately following femtosecond-laser excitation in phase-change materials[J]. Physical Review Letters, 117, 135501(2016).

    [35] et alExcitation-assisted disordering of GeTe and related solids with resonant bonding[J]. The Journal of Physical Chemistry C, 118, 10248-10253(2014). http://pubs.acs.org/doi/10.1021/jp412412j

    [36] Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films[J]. Physical Review B, 68, 064114(2003).

    [37] Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations[J]. The Journal of Chemical Physics, 129, 054110(2008).

    [38] Gross E K U. Density-functional theory for time-dependent systems[J]. Physical Review Letters, 52, 997-1000(1984).

    [39] et alSurface electronic dynamics at nanoscale[J]. Modern Physics, 24, 39-43(2012).

    [40] et alCarrier-multiplication-induced structural change during ultrafast carrier relaxation and nonthermal phase transition in semiconductors[J]. Physical Review Letters, 117, 126402(2016).

    [41] et alTime-dependent density-functional theory molecular-dynamics study on amorphization of Sc-Sb-Te alloy under optical excitation[J]. npj Computational Materials, 6, 31(2020).

    [42] et alPhotoexcitation insolids: first-principles quantum simulations by real-time TDDFT[J]. Advanced Theory and Simulations, 1, 1800055(2018).

    [43] et alRecent progresses in real-time local-basis implementation of time dependent density functional theory for electron-nucleus dynamics[J]. Computational Materials Science, 112, 478-486(2016).

    [44] et alDirectional forces by momentumless excitation and order-to-order transition in Peierls-distorted solids: the case of GeTe[J]. Physical Review Letters, 120, 185701(2018).

    [45] Unconventional phase transition of phase-change-memory materials for optical data storage[J]. Chinese Physics B, 28, 104202(2019).

    Chen Nianke, Huang Yuting, Li Xianbin, Sun Hongbo. Recent Progress on Ultrafast Laser-Induced Solid Nonthermal Phase Transitions and Atomic Mechanisms[J]. Chinese Journal of Lasers, 2021, 48(2): 202001
    Download Citation