[1] Bradstreet B J 1968 Effect of surface tension and metal flow on weld bead formation Weld. J. 47 314-22
[2] Gratzke U, Kapadia P D, Dowden J, Kroos J and Simon G 1992 Theoretical approach to the humping phenomenon in welding processes J. Phys. D: Appl. Phys. 25 1640-7
[3] Nguyen T C, Weckman D C, Johnson D A and Kerr H W 2005 The humping phenomenon during high speed gas metal arc welding Sci. Technol. Weld. Join. 10 447-59
[4] Cho M H and Farson D F 2007 Understanding bead hump formation in gas metal arc welding using a numerical simulation Metall. Mater. Trans. B 38 305-19
[5] Otto A, Patschger A and Seiler M 2016 Numerical and experimental investigations of humping phenomena in laser micro welding Phys. Procedia 83 1415-23
[6] Wu D S, Hua X M, Ye D J and Li F 2017 Understanding of humping formation and suppression mechanisms using the numerical simulation Int. J. Heat Mass Transfer 104 634-43
[7] Chen Y, Peng X, Kong L B, Dong G X, Remani A and Leach R 2021 Defect inspection technologies for additive manufacturing Int. J. Extreme Manuf. 3 022002
[8] Chao W, Zhang Z Z, Cheng D X, Sun Z, Zhu M H and Li L 2020 An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales Int. J. Extreme Manuf. 3 012003
[9] Yadroitsev I and Bertrand S I 2007 Parametric analysis of the selective laser melting process Appl. Surf. Sci. 253 8064-9
[10] Li R D, Liu J H, Shi Y S, Wang L and Jiang W 2012 Balling behavior of stainless steel and nickel powder during selective laser melting process Int. J. Adv. Manuf. Technol. 59 1025-35
[11] Roehling T T, Wu S S Q, Khairallah S A, Roehling J D, Soezeri S S, Crumb M F and Matthews M J 2017
[12] Shi R P, Khairallah S A, Roehling T T, Heo T W, McKeown J T and Matthews M J 2020 Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy Acta Mater. 184 284-305
[13] Gusarov A V and Smurov I 2010 Modeling the interaction of laser radiation with powder bed at selective laser melting Phys. Procedia 5 381-94
[14] King W, Anderson A T, Ferencz R M, Hodge N E, Kamath C and Khairallah S A 2015 Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory Mater. Sci. Technol. 31 957-68
[15] Zhang W X, Hou W Y, Deike L and Arnold C B 2020 Using a dual-laser system to create periodic coalescence in laser powder bed fusion Acta Mater. 201 14-22
[16] King W E, Barth H D, Castillo V M, Gallegos G F, Gibbs J W, Hahn D E, Kamath C and Rubenchik A M 2014 Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing J. Mater. Process. Technol. 214 2915-25
[17] Rayleigh J W S B 1896 The Theory of Sound vol 2 (London: Macmillan)
[18] Davis S H 1980 Moving contact lines and rivulet instabilities. Part 1. The static rivulet J. Fluid Mech. 98 225-42
[19] Gao F Q and Sonin A A 1994 Precise deposition of molten microdrops: the physics of digital microfabrication Proc. R. Soc. A 444 533-54
[20] Schiaffino S and Sonin A A 1997 Formation and stability of liquid and molten beads on a solid surface J. Fluid Mech. 343 95-110
[21] Nguyen T C, Weckman D C, Johnson D A and Kerr H W 2006 High speed fusion weld bead defects Sci. Technol. Weld. Join. 11 618-33
[22] Schiaffino S 1996 The Fundamentals of Molten Microdrop Deposition and Solidification (Cambridge, MA: MIT Press)
[23] Rubenchik A M, King W E and Wu S S 2018 Scaling laws for the additive manufacturing J. Mater. Process. Technol. 257 234-43
[24] Zhang W X, Wong K, Morales M, Molpeceres C and Arnold C B 2020 Implications of using two low-power continuous-wave lasers for polishing Int. J. Extreme Manuf. 2 035101
[25] Hann D B, Iammi J and Folkes J 2011 A simple methodology for predicting laser-weld properties from material and laser parameters J. Phys. D: Appl. Phys. 44 445401