• Acta Optica Sinica (Online)
  • Vol. 1, Issue 2, 0206001 (2024)
Lei Liu1, Xiaoming Li1, Hui Li1,2,*, and Pinghui Wu3
Author Affiliations
  • 1School of Physical Science and Technology, Kunming University, Kunming 650214, Yunnan , China
  • 2Key Laboratory of Artificial Microstructures in Yunnan Higher Education Institutions, Kunming University, Kunming 650214, Yunnan , China
  • 3Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, Fujian , China
  • show less
    DOI: 10.3788/AOSOL240433 Cite this Article Set citation alerts
    Lei Liu, Xiaoming Li, Hui Li, Pinghui Wu. Spatial Focusing of Radially Polarized Multi-Gaussian Schell-Model Fractional Vortex Beam[J]. Acta Optica Sinica (Online), 2024, 1(2): 0206001 Copy Citation Text show less
    References

    [1] Ren J C, Meng X Y, Wang Y et al. Phase analysis for partially coherent light propagating through an optimized aperture in a synchrotron beamline[J]. Journal of Synchrotron Radiation, 27, 1485-1493(2020).

    [2] Kato Y, Mima K, Miyanaga N et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 53, 1057-1060(1984).

    [3] Mandel L, Wolf E, Meystre P. Optical coherence and quantum optics[J]. American Journal of Physics, 64, 1438-1439(1996).

    [4] Wolf E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Physics Letters A, 312, 263-267(2003).

    [5] Gori F, Santarsiero M, Borghi R et al. Partially coherent sources with helicoidal modes[J]. Journal of Modern Optics, 45, 539-554(1998).

    [6] Dong Y M, Wang F, Zhao C L et al. Effect of spatial coherence on propagation, tight focusing, and radiation forces of an azimuthally polarized beam[J]. Physical Review A, 86, 013840(2012).

    [7] Shirai T, Kellock H, Setälä T et al. Visibility in ghost imaging with classical partially polarized electromagnetic beams[J]. Optics Letters, 36, 2880-2882(2011).

    [8] Liu X L, Wang F, Zhang M H et al. Experimental demonstration of ghost imaging with an electromagnetic Gaussian Schell-model beam[J]. Journal of the Optical Society of America A, 32, 910-920(2015).

    [9] Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. Journal of the Optical Society of America A, 19, 1794-1802(2002).

    [10] Korotkova O. Scintillation index of a stochastic electromagnetic beam propagating in random media[J]. Optics Communications, 281, 2342-2348(2008).

    [11] Friberg A T, Visser T D. Scintillation of electromagnetic beams generated by quasi-homogeneous sources[J]. Optics Communications, 335, 82-85(2015).

    [12] Gori F, Ramírez-Sánchez V, Santarsiero M et al. On genuine cross-spectral density matrices[J]. Journal of Optics A, 11, 085706(2009).

    [13] Chen Y, Wang F, Yu J et al. Vector Hermite‒Gaussian correlated Schell-model beam[J]. Optics Express, 24, 15232-15250(2016).

    [14] Korotkova O, Sahin S, Shchepakina E. Multi-Gaussian Schell-model beams[J]. Journal of the Optical Society of America A, 29, 2159-2164(2012).

    [15] Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles[J]. Optics Letters, 37, 2970-2972(2012).

    [16] Mei Z R, Korotkova O, Shchepakina E. Electromagnetic multi-Gaussian Schell-model beams[J]. Journal of Optics, 15, 025705(2013).

    [17] Korotkova O. Random sources for rectangular far fields[J]. Optics Letters, 39, 64-67(2014).

    [18] Guo L N, Chen Y H, Liu X L et al. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam[J]. Optics Express, 24, 13714-13728(2016).

    [19] Zeng J, Liu X L, Wang F et al. Partially coherent fractional vortex beam[J]. Optics Express, 26, 26830-26844(2018).

    [20] Xu H F, Zhang R, Sheng Z Q et al. Focus shaping of partially coherent radially polarized vortex beam with tunable topological charge[J]. Optics Express, 27, 23959-23969(2019).

    [21] Zhou Y J, Zhao D M. Statistical properties of electromagnetic twisted Gaussian Schell-model array beams during propagation[J]. Optics Express, 27, 19624-19632(2019).

    [22] Xu H F, Zhang R, Sheng Z Q et al. Shaping the focal intensity distribution using a partially coherent radially polarized beam with multiple off-axis vortices[J]. Optics Express, 28, 28858-28867(2020).

    [23] Xu H F, Zhang R, Sheng Z Q et al. Partially coherent radially polarized beam with an off-axis vortex[J]. Optics Communications, 480, 126477(2021).

    [24] Zhang H, Wang H Y, Lu X Y et al. Statistical properties of a partially coherent vector beam with controllable spatial coherence, vortex phase, and polarization[J]. Optics Express, 30, 29923-29939(2022).

    [25] Zhao C L, Wang F, Dong Y et al. Effect of spatial coherence on determining the topological charge of a vortex beam[J]. Applied Physics Letters, 101, 261104(2012).

    [26] Wang Z Y, Lu X Y, Gao J B et al. Coherence phase spectrum analyzer for a randomly fluctuated fractional vortex beam[J]. Photonics Research, 12, 33-39(2024).

    [27] Zhang Z, Li G Y, Liu Y L et al. Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations[J]. Opto-Electronic Science, 3, 240001(2024).

    [28] Seiboth F, Kahnt M, Lyubomirskiy M et al. Refractive hard X-ray vortex phase plates[J]. Optics Letters, 44, 4622-4625(2019).

    [29] Verbeeck J, Tian H, Béché A. A new way of producing electron vortex probes for STEM[J]. Ultramicroscopy, 113, 83-87(2012).

    [30] Zhang H, Zeng J, Lu X Y et al. Review on fractional vortex beam[J]. Nanophotonics, 11, 241-273(2021).

    [31] Martínez-Herrero R, Mejías P M, Gori F. Genuine cross-spectral densities and pseudo-modal expansions[J]. Optics Letters, 34, 1399-1401(2009).

    [32] Ping C C, Liang C H, Wang F et al. Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties[J]. Optics Express, 25, 32475-32490(2017).

    [33] Huang Y P, Zhang B, Gao Z H et al. Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence[J]. Optics Express, 22, 17723-17734(2014).

    [34] de Santis P, Gori F, Guattari G et al. An example of a Collett‒Wolf source[J]. Optics Communications, 29, 256-260(1979).

    [35] Topuzoski S. Fraunhofer diffraction of Laguerre‒Gaussian laser beam by helical axicon[J]. Optics Communications, 330, 184-190(2014).

    [36] Collins S A. Lens-system diffraction integral written in terms of matrix optics[J]. Journal of the Optical Society of America, 60, 1168-1177(1970).

    [37] Bastiaans M J. Application of the Wigner distribution function to partially coherent light[J]. Journal of the Optical Society of America A, 3, 1227-1238(1986).

    [38] Tong R H, Dong Z, Chen Y H et al. Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence[J]. Optics Express, 28, 9713-9727(2020).

    [39] Li Q F, Chambonneau M, Blothe M et al. Flexible, fast, and benchmarked vectorial model for focused laser beams[J]. Applied Optics, 60, 3954-3963(2021).

    [40] Marcel L, Ramachandra R, Leitgeb Rainer A et al. Fast focus field calculations[J]. Optics Express, 14, 11277-11291(2006).

    [41] Zeng J, Liang C H, Wang H Y et al. Partially coherent radially polarized fractional vortex beam[J]. Optics Express, 28, 11493-11513(2020).

    [42] Wang F, Cai Y J, Korotkova O. Partially coherent standard and elegant Laguerre‍‒‍Gaussian beams of all orders[J]. Optics Express, 17, 22366-22379(2009).

    [43] Zhu J, Zhang H, Wang Z et al. Coherence singularity and evolution of partially coherent Bessel‍‒‍Gaussian vortex beams[J]. Optics Express, 31, 9308-9318(2023).

    [44] Chen Y H, Wang F, Cai Y J. Recent progress in modulating the spatial correlation functions of partially coherent beams[J]. Progress in Physics, 35, 51-73(2015).

    Lei Liu, Xiaoming Li, Hui Li, Pinghui Wu. Spatial Focusing of Radially Polarized Multi-Gaussian Schell-Model Fractional Vortex Beam[J]. Acta Optica Sinica (Online), 2024, 1(2): 0206001
    Download Citation