• Acta Photonica Sinica
  • Vol. 48, Issue 3, 316002 (2019)
CHEN Ke*, WANG Qing-qing, ZHENG Hong-mei, WANG Yuan-yuan, and WU Rui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20194803.0316002 Cite this Article
    CHEN Ke, WANG Qing-qing, ZHENG Hong-mei, WANG Yuan-yuan, WU Rui. Optical Absorption of Anisotropy Hybrid Grating Thin Film Solar Cell[J]. Acta Photonica Sinica, 2019, 48(3): 316002 Copy Citation Text show less
    References

    [1] ZHANG Xiu-qing, LI Yan-hong, ZHANG Chao. Research progress on solar cell[J]. Materials China, 2014, 33(7): 436-441.

    [2] ALI N, HUSSAIN A, AHMED R, et al. Advances in nanostructured thin film materials for solar cell applications[J]. Renewable & Sustainable Energy Reviews, 2016, 59: 726-737.

    [3] LEE T D, EBOG A U. A review of thin film solar cell technologies and challenges[J]. Renewable & Sustainable Energy Reviews, 2017, 70: 1286-1297.

    [4] ZHANG R Y, SHAO B, DONG J R, et al. Absorption enhancement analysis crystalline Si thin film solar cells based on broadband antireflection nanocone grating[J]. Jouranl of Applied Physics, 2011, 110(11): 113105.

    [5] LIU L, HUO Y P, ZHAO K J, et al. Broadband absorption enhancement in plasmonic thin-film solar cells with grating surface[J]. Superlattices and Microstructures, 2015, 86: 300-305.

    [6] BAI W L, GAN Q Q, BARTOLI F, et al. Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells[J]. Optics Letters, 2009, 34(23): 3725-3727.

    [7] ZENG L, HONG C, LIU J, et al. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector[J]. Applied Physics Letters, 2006, 89(11): 111111.

    [8] FERRY V E, MUNDAY J N, ATWATER H A. Design considerations for plasmonic photovoltaics[J]. Advanced Materials, 2010, 22(43): 4794-4808.

    [9] FERRY V E, VERSCHUUREN M A, LI H B T, et al. Polman, Light trapping in ultrathin plasmonic solar cells[J]. Optics Express, 2010, 18(13): A237-A245.

    [10] MENNUCCI C, MUHAMMAD M H, HAMEED M F O, et al. Broadband light trapping in nanotextured thin film photovoltaic devices[J]. Applied Surface Science, 2018, 446: 74-82.

    [11] ZHANG W, JIANG L Y, LI X Y. Broadband light harvesting enhancement with front double and back metallic gratings in thin film solar cells[J]. Optics Communications, 2014, 317: 83-87.

    [12] WU J. Absorption enhancement in thin-film solar cells based on periodically chirped structure[J]. Solar Energy, 2018, 165: 85-89.

    [13] CHEN K, WU R, ZHENG H M,et al. Photovoltaic absorber with different grating profiles in the near-infrared region[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2017, 34(11): 2000-2006.

    [14] ZHANG X L, SONG J F, FENG J, et al. Spectral engineering by flexible tunings of optical Tamm states and Fabry-Perot cavity resonance[J]. Optics Letters, 2013, 38(21): 4382-4385.

    [15] ROTHEMUND R, UMUNDUM T, MEINHARDT G, et al. Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings[J]. Progress in Photovoltaics, 2013, 21(4): 747-753.

    [16] TAN H R, SANTBERGEN R, SMETS A H M, et al. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles[J]. Nano Letters, 2012, 12(8): 4070-4076.

    [17] MUNDAY J N, ATWATER H A. Large integrated absorption enhancement in plamonic solar cells by combining metallic gratings and antireflection coatings[J]. Nano Letters, 2011, 11(6): 2195-2201.

    [18] SHI W B, FAN R H, ZHANG K, et al. Broadband light trapping and absorption of thin-film silicon sandwiched by trapezoidal surface and silver grating[J]. Journal of Applied Physics, 2015, 117(6): 065104.Nano Letters, 2011, 11(6): 2195-2201.

    [19] SHI Y P, WANG X D, LIU W, et al. Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle grating[J]. Physica Status Solidi A-Applications and Materials Science, 2015, 212(2): 312-316.

    [20] THOUTI E, SHARMA A K, KOMARALA V K. Role of textured silicon surface in plasmonic light trapping for solar cells: the effect of pyramids width and height[J]. IEEE Journal of Photovoltaics, 2016, 6(6): 1403-1406.

    [21] FANG X, ZHAO C Y. Grading absorption and enhancement in silicon nanpwire arrays with thin blocks[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 194: 7-16.

    [22] DENG C,TAN X Y, JIANG L H, et al. Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications[J]. Optics Communications, 2018, 407: 199-203.

    [23] DE ZOYSA M, ISHIZAKI K, TANAKA Y, et al. Enhanced efficiency of ultrathin (similar to 500 nm)-film microcrystalline silicon photonic crtstal solar cells[J]. Applied Physics Express, 2017, 10(1): 012302.

    [24] BAEK S W, LEE G S, PARK J G. Effect of nanohole structure on pyramid textured surface on photo-voltaic performance of silicon solar cell[J]. Journal of Applied Physics, 2014, 116(8): 084511.

    [25] FERRY V E, POLMAN A, ATWATER H A. Modeling light trapping in nanostructured solar cells[J]. Acs Nano, 2011, 5(12): 10055-10064.

    [26] FIROOZI A, MOHAMMADI A. Design of plasmonics backcontact nanogratings for broadband and polarization-insensitive absorption enhancement in thin-film solar cell[J].International Journal of Modern Physics B, 2015, 29: 17.

    [27] CHEN K, WANG Y Y, ZHENG H M, et al. Optical Absorption of thin film solar cells with hybrid arranged bottom grating[J]. Plasmonics, 2018, 13(3): 815-823.

    CHEN Ke, WANG Qing-qing, ZHENG Hong-mei, WANG Yuan-yuan, WU Rui. Optical Absorption of Anisotropy Hybrid Grating Thin Film Solar Cell[J]. Acta Photonica Sinica, 2019, 48(3): 316002
    Download Citation