• Chinese Journal of Lasers
  • Vol. 42, Issue 8, 803002 (2015)
Dong Bizhe*, Yang Wuxiong, Wu Shikai, Xiao Rongshi, and Wang Qiming
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201542.0803002 Cite this Article Set citation alerts
    Dong Bizhe, Yang Wuxiong, Wu Shikai, Xiao Rongshi, Wang Qiming. Numerical Analysis on the Deformation Controlling of T-joint LBW with Auxiliary Heat Source for High Strength Aluminum Alloy[J]. Chinese Journal of Lasers, 2015, 42(8): 803002 Copy Citation Text show less
    References

    [1] Zink W. Welding fuselage shells[C]. Industrial Laser Solutions for Manufacturing, 2001, 16(4): 7-10.

    [2] Schneider K, Schumacher J. Laser technologie-ein schlüssel im wettbewerb der modernen strukturtechnologien im zivilen flugzeugbau[C]. Laser strahlfügen, Strahltechnik Band 19, Bremen: BIAS-Verlag, 2002: 5-14.

    [3] Yang Wuxiong, Zhang Xinyi, Xiao Rongshi. Dual-beam laser welding of T-joint of aluminum-lithium alloy 2060-T8/2099-T83[J]. China J Lasers, 2013, 40(7): 0703001.

    [4] Zuo Tiechuan, Xiao Rongshi, Chen Kai, et al.. Laser Materials Processing of High Strength Aluminum Alloys[M]. Beijing: National Defense Industry Press, 2002: 1-4, 87-89.

    [5] Heinz A, Hasler A, Keidel C, et al.. Recent development in aluminum alloy for aerospace applications[J]. Materials Science and Engineering A, 2000, 280(1): 102-107.

    [6] Rendigs K H. Airbus and Current Aircrafts Metal Technologies[R]. Airbus Deutschland Gmbh, Germany, 2008.

    [7] Williams J C, Starke E A. Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003, 51(19): 5775-5799.

    [8] Xu Lianghong, Tian Zhiling, Peng Yun, et al.. Microstructure and mechanical properties of high strength aluminum alloy laser welds [J]. Chinese J Lasers, 2008, 35(3): 456-461.

    [9] Zhai Yufeng, Huang Jian, Li Min, et al.. Research on high speed high power CO2 laser welding of 6061-T6 aluminum with filler wire[J]. Chinese J Lasers, 2011, 38(5): 0503001.

    [10] Wang Tao, Zhou Dianwu, Peng Yan, et al.. Steel- to- aluminum fiberlaser butt welding with Si powder pre- filling[J]. Chinese J Lasers, 2012, 38(6): 0603009.

    [11] Mikami Y, Mochizuki M, Toyoda M, et al.. Measurement and numerical simulation of angular distortion of fillet welded T-joints[J]. Welding International, 2007, 21(8): 547-560.

    [12] Guo S Q, Li X H. Welding distortion control of thin aluminum alloy plate by static thermal tensioning[J]. Journal of Material Science & Technology, 2001, 17(1): 163-164.

    [13] Zhang M M, Li J Y. The control of pre-tensioning over the welding deformation of aluminum alloy[J]. Development and Application of Materials, 2005, 2: 36-38.

    [14] Li J, Yang J G, Liu X S. New methods to control stress deformation of thin- walled sheet through welding with trailing rotating extrusion[J]. Journal of Mechanical Engineering, 2010, 46(12): 81-84.

    [15] Zain U A M, Nélias D, Jullien J F, et al.. Experimental investigation and finite element simulation of laser beam welding induced residual stresses and distortions in thin sheets of AA6056-T4[J]. Materials Science and Engineering A, 2010, 527(12): 3025-3039.

    [16] Zain U A M, Nélias D, Jullien J F, et al.. Finite element analysis of metallurgical phase transformations in AA6056-T4 and their effects upon the residual stress and distortion states of a laser welded T- joint[J]. International Journal of Pressure Vessels and Piping, 2011, 88(1): 45-56.

    [17] Reimers P, Gorba A. Nonlinear Buckling Analysis on Welded Airbus Fuselage Panels[R]. IWiS, Germany, 2003.

    [18] Plam F. Can welded fuselage structures fulfil future A/C damage tolerance requirements[C]. First International Conference on Damage Tolerance of Aircraft Structures, TU Delft, Netherlands, 2007.

    [19] Labeas G N, Diamantakos I D. Calculation of stress intensity factors of cracked T-joints considering laser beam welding residual stresses[C]. First International Conference on Damage Tolerance of Aircraft Structures TU Delft, Netherlands, 2007.

    [20] Moreira P M G P, Trummer V R, De C P M S T. Lightweight Stiffened Panels Fabricated UsingEmerging Fabrication Technologies: Fatigue Behavior[M]. Structural Connections for Lightweight Metallic Structures Advanced Structured Materials, Berlin Heidelberg: Springer Press, 2012: 151-172.

    [21] Wu N Q, Xia C, Li M, et al.. Interfacial structure and micro and nano-mechanical behavior of laser-welded 6061 aluminum alloy blank[J]. Journal of Engineering Materials and Technology, 2004, 126(1): 8-13.

    [22] David S A, Vitek J M. Correlation between solidification parameters and weld microstructures[J]. International Materials Reviews, 1989, 34(5): 213-245.

    [23] Braun R. Nd∶YAG laser butt welding of AA6013 using silicon and magnesium containing filler powders[J]. Materials Science and Engineering A, 2006, 426(1): 250-262.

    [24] Liu C, Northwood D O, Bhole S D. Tensile fracture behavior in CO2 laser beam welds of 7075-T6 aluminum alloy[J]. Materials & design, 2004, 25(7): 573-577.

    CLP Journals

    [1] He Yue, Wu Qiang, Zou Jianglin, Ha Na, Xiao Rongshi. Melting Behavior of Materials in Grooves During Fiber Laser Pressure Welding of Thin-Sheet Aluminum Alloy[J]. Chinese Journal of Lasers, 2017, 44(6): 602008

    Dong Bizhe, Yang Wuxiong, Wu Shikai, Xiao Rongshi, Wang Qiming. Numerical Analysis on the Deformation Controlling of T-joint LBW with Auxiliary Heat Source for High Strength Aluminum Alloy[J]. Chinese Journal of Lasers, 2015, 42(8): 803002
    Download Citation