• Spectroscopy and Spectral Analysis
  • Vol. 38, Issue 8, 2606 (2018)
FU Chen-fei1、2、* and LUO Li-qiang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2018)08-2606-06 Cite this Article
    FU Chen-fei, LUO Li-qiang. Quantitative Analysis, Distribution and Speciation of Elements as Pb, As, Cd in Human Hair from Inhabitants in a Lead-Zinc Mining Area[J]. Spectroscopy and Spectral Analysis, 2018, 38(8): 2606 Copy Citation Text show less

    Abstract

    Hair is one of the excretion organs in human body, so the element content in hair can reflect human body exposure to the toxic elements in the vicinity of the mining area in a period. Pb, As, Cd, Ca, Mg, Fe, Zn, Cu, Mn and Sr in hair sampels collected from a lead-zinc mine were analyzed quantitatively with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES). Micro X-ray fluorescence(Micro-XRF) and X-ray absorption near edge structure(XANES) were used to determine element distribution of Pb, As and speciation of Pb, respectively. The study revealed that (1) The average contents Pb, Zn, Fe, Ca(female) and Mn(male) in the hair sampels were 1.2 times, 1.3 times, 3.9 times, 1.6 times and 1.2 times higher than the normal values, respectively. (2) It was confirmed that The toxic elements in the mining area can be transferred to human beings through the food chain and may causeeventually serious health problems. In addition, different physiological features and living habits were main factors that determined the metal distribution in the different gender groups. Those restuls in that Pb, Cd, Ca, Mg, Zn, Cu and Sr in female were significantly higher than those in male while Fe was in male higher than that in femail. (3) As a result of elements properties, sources and absorption mechanismthere was a positive correlation between Ca-Mg-Sr-Zn, Pb-Cd-Cu-Mn and Fe-Mn respectively. (3) Micro-XRF mapping showed that Pb and As were mainly distributed along the hair axis. Horizontally, the concentration gradient of Pb and As plunge from inside to outside. Because daily cleaning and wearing will lead to peeling of Pb and As which were not closely tied. Longitudinally, there was an increasing trend of Pb and As from hair root to hair tip. We speculated that Pb and As unite with cysteine of keratin in cortex. The vertical distribution characteristics of Pb and As reflected the change of external environment which residents exposed to. (4) On the basis fo XANES analysis, lead in the collected hair sample was composed of 54.7% lead phosphate, 36.8% Pb-glutathione and 8.4% lead sulfide. (5) The main lead speciation in hair were insolubility lead phosphate and sulfur-bounding speciation like Pb-cysteine, suggesting that hair is one of the main way to metabolise lead. To our knowledge, this is the first report on the speciation of Pb in the human hair from lead-zinc mining area.
    FU Chen-fei, LUO Li-qiang. Quantitative Analysis, Distribution and Speciation of Elements as Pb, As, Cd in Human Hair from Inhabitants in a Lead-Zinc Mining Area[J]. Spectroscopy and Spectral Analysis, 2018, 38(8): 2606
    Download Citation