• Journal of Atmospheric and Environmental Optics
  • Vol. 11, Issue 1, 51 (2016)
Ruijuan HAO1、2, Zhoufeng WANG1、2, Wenke WANG1、2、*, and Yaqian ZHAO1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2016.01.007 Cite this Article
    HAO Ruijuan, WANG Zhoufeng, WANG Wenke, ZHAO Yaqian. Optimal Algorithm of Red Edge Position for Soybean Leaf Under CO2 Stress[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(1): 51 Copy Citation Text show less
    References

    [1] Baranoski G V G, Rokne J G. A practical approach for estimating the red edge position of plant leaf reflectance[J]. Int. J. Remote Sens., 2005, 26(3): 503-521.

    [2] Huang Wenjiang, Wang Jihua, Liu Liangyun, et al. The red edge parameters diversification disciplinarian and its application for nutrition diagnosis[J]. Remote Sensing Technology and Application, 2008, 18(4): 206-211(in Chinese).

    [3] Yuan Jie, Wang Dengwei, Huang Chunyan, et al. Estimating chlorophyll density of cotton canopy in North of Xinjiang by using hyperspectral date[J]. Agricultural Research in the Arid Areas, 2007, 25(3): 89-93(in Chinese).

    [4] Zhang Xuehong, Liu Shaomin, He Beibei. Analysis on hyper spectral characteristics of pape at different nitrogen levels[J]. Journal of Beijing Normal University (Natural Science), 2007, 43(3): 245-249(in Chinese).

    [5] Huang Jingfeng, Wang Yuan, Wang Fumin, et al. Red edge characteristics and leaf area index estimation model using hyperspctral data for rape[J]. Transactions of the CSAE, 2006, 22(8): 22-26(in Chinese).

    [6] Yao Xia, Tian Yongchao, Liu Xiaojun, et al. Comparative study on monitoring canopy leaf nitrogen status on red edge position with different algorithms in wheat[J]. Scientia Agricultura Sinica, 2010, 43(13): 2661-2667(in Chinese).

    [7] Dawson T P, Curran P J. A new technique for interpolating the reflectance red edge position[J]. Int. J. Remote Sens., 1998, 19(1): 2133-2139.

    [8] Clevers J G P W, De Jong S M, Epema G F, et al. Derivation of the red edge index using MER IS standard band setting[J]. Int. J. Remote Sens., 2002, 23(16): 3169-3184.

    [9] Pu R, Gong P, Biging G S, et al. Extraction of red edge optical parameters from hyperion data for estimation of forest leaf area index[J]. IEEE Trans. Geos. Remote Sens., 2003, 41(4): 916-921.

    [10] Li L, Ustin S L, Lay M. Application of AVIR IS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico[J]. Remote Sens. Environ., 2005, 94: 1-16.

    [11] Cho M A, Skidmore A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method[J]. Remote Sens. Environ., 2006, 101(2): 181-193.

    [12] Horler D N H, Barber J, Barringer A R. Effects of heavy metal on the absorbance and reflectance spectra of plants[J]. Int. J. Remote Sens., 1980, 1(2): 121.

    [13] Curran P J, Dungan J I, Gholz H I. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine[J]. Tree Physiol., 1990, 7: 33.

    [14] Zhang Yonghe, Guo Xiaochuan, Chu Wudao, et al. Estimation model of schima superba leaf chlorophyll content based on red edge position[J]. Infrared and Laser Engineering, 2013, 42(3): 798-804(in Chinese).

    [15] Yao Fuqi, Zhang Zhenhua, Yang Ruiya, et al. Hyperspectral models for estimating vegetation chlorophyll content based on red edge parameter[J]. Transactions of the CSAE. 2009, 25(2): 123-129(in Chinese).

    [16] Wu Yongfeng, Hu Xin, Lu Guohua, et al. Comparison of red edge parameters of winter wheat canopy under late frost stress[J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2190-2195(in Chinese).

    [17] Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectral in remote sensing[J]. Remote Sens. Environ., 1990, 33: 55-64.

    [18] Baret F, Jacquemoud S, Guyot G. Modeled analysis of the biophysical nature of spectral shift and comparison with information content of broad bands[J]. Remote Sens. Environ., 1992, 41: 133-142.

    [19] Miller J R, Hare E W, Wu J, et al. Quantitative characterization of vegetation red-edge reflectance I. An inverted-Gaussian reflectance model[J]. Int. J. Remote Sens., 1990, 11: 1755-1773.

    [20] Pu R, Gong P, Biging G S, et al. Extraction of red edge optial parameters from Hyperion data for estimation of forest leaf area index[J]. IEEE Trans. Geos. Remote Sens., 2003, 41(4): 916-921.

    [21] Bergfeld D, Evans W C, Howle J F, et al. Carbon dioxide emissions from vegetation-kill zones around the resurgent dome of Long Valley Caldera, eastern California, USA[J]. J. Volcanol. Geotherm. Res., 2006, 152(1/2) :140-156.

    [22] Farrar C D, Sorey M L, Evans W C, et al. Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest[J]. Nature, 1995, 24(376): 675-677.

    [23] Martini B A, Silver E A, Potts D C, et al. Geological and geobotanical studies of Long Valley Caldera, CA, USA, utilizing new 5 m hyperspectral imagery[C]. IEEE Int. Geosci. Remote Sens. Symp., Honolulu, HI, 2000: 24-28.

    HAO Ruijuan, WANG Zhoufeng, WANG Wenke, ZHAO Yaqian. Optimal Algorithm of Red Edge Position for Soybean Leaf Under CO2 Stress[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(1): 51
    Download Citation