• Matter and Radiation at Extremes
  • Vol. 3, Issue 5, 248 (2018)
[in Chinese]1、2、3, [in Chinese]2, [in Chinese]3, [in Chinese]2, [in Chinese]1、4, [in Chinese]2, [in Chinese]2, [in Chinese]2, [in Chinese]2, [in Chinese]2, [in Chinese]2, [in Chinese]2, [in Chinese]1, [in Chinese]1, [in Chinese]1, and [in Chinese]1
Author Affiliations
  • 1College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, China
  • 2Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
  • 3E.T.S.I. Aeronauticos y del Espacio, Universidad Politecnica de Madrid, Madrid, 28040, Spain
  • 4IFSA Collaborative Innovation Center, Shanghai Jiao Tong Univeristy, Shanghai, 200240, China
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2018, 3(5): 248 Copy Citation Text show less
    References

    [1] J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 11 (2004) 339-491.

    [2] Ke Lan, Jiu Liu, Zhichao Li, Xufei Xie, Wenyi Huo, et al., Progress in octahedral spherical hohlraum study, Matter. Radiat. Extrem. 1 (2016)8-27.

    [3] S. Kawata, T. Karino, A.I. Ogoyski, Review of heavy-ion inertial fusion physics, Matter. Radiat. Extrem. 1 (2016) 89-113.

    [4] C. Olson, G. Rochau, S. Slutz, C. Morrow, R. Olson, et al., Development path for Z-pinch IFE, Fusion Sci. Technol. 47 (2005) 633-640.

    [5] R.B. Spielman, C. Deeney, G.A. Chandler, M.R. Douglas, D.L. Fehl, et al., Tungsten wire-array Z-pinch experiments at 200 TWand 2 MJ, Phys. Plasmas 5 (1998) 2105-2111.

    [6] C.L. Ruiz, G.W. Cooper, S.A. Slutz, J.E. Bailey, G.A. Chandler, et al., Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums, Phys. Rev. Lett. 93(2004) 015001.

    [7] G.A. Rochau, J.E. Bailey, G.A. Chandler, G. Cooper, G.S. Dunham, et al., High performance capsule implosions driven by the Z-pinch dynamic hohlraum, Plasma Phys. Contr. Fusion 49 (2007) B591.

    [8] W.A. Stygar, T.J. Awe, J.E. Bailey, N.L. Bennett, E.W. Breden, et al., Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments, Phys. Rev. ST Accel. Beams 18 (2015) 110401.

    [9] R.W. Lemke, J.E. Bailey, G.A. Chandler, T.J. Nash, S.A. Slutz, et al., Amplitude reduction of nonuniformities induced by magnetic RayleigheTaylor instabilities in Z-pinch dynamic hohlraums, Phys. Plasmas 12 (2005) 012703.

    [10] S.A. Slutz, K.J. Peterson, R.A. Vesey, R.W. Lemke, J.E. Bailey, et al., Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions, Phys. Plasmas 13 (2006) 102701.

    [11] Jianjun Deng, Weiping Xie, Shuping Feng, Meng Wang, Hongtao Li, et al., From concept to realitydA review to the primary test stand and its preliminary application in high energy density physics, Matter. Radiat. Extrem. 1 (2016) 48-58.

    [12] Delong Xiao, Shunkai Sun, Chuang Xue, Yang Zhang, Ning Ding, Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation, Acta Phys. Sin. 64 (2015) 235203.

    [13] Ning Ding, Yang Zhang, Delong Xiao, Jiming Wu, Zihuan Dai, et al., Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM, Matter. Radiat. Extrem. 1 (2016) 135-152.

    [14] Xianbin Huang, Xiaodong Ren, Jiakun Dan, Kunlun Wang, Qiang Xu, et al., Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility, Phys. Plasmas 24 (2017) 092704.

    [15] Shijian Meng, Qingyuan Hu, Jiaming Ning, Fan Ye, Zhanchang Huang, et al., Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1, Phys. Plasmas 24 (2017) 014505.

    [16] Fuyuan Wu, Rafael Ramis, Zhenghong Li, Yanyun Chu, Jianlun Yang, Numerical simulation of the interaction between Z-pinch plasma and foam converter using code MULTI, Fusion Sci. Technol. (2017), https://doi.org/10.1080/15361055.2017.1347458.

    [17] R. Ramis, J. Meyer-ter-Vehn, J. Ramírez, MULTI2Dda computer code for two-dimensional radiation hydrodynamics, Comput. Phys. Commun. 180 (2009) 977-994.

    [18] Fuyuan Wu, Rafael Ramis, Zhenghong Li, A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations, J. Comput. Phys. (2017), https://doi.org/10.1016/j.jcp.2017.12.014.

    [19] S.A. Slutz, M.R. Douglas, J.S. Lash, R.A. Vesey, G.A. Chandler, et al., Scaling and optimization of the radiation temperature in dynamic hohlraums, Phys. Plasmas 8 (2001) 1673-1691.

    [20] T.J. Nash, D.H. McDaniel, R.J. Leeper, C.D. Deeney, T.W.L. Sanford, Design, simulation, and application of quasi-spherical 100 ns Z-pinch implosions driven by tens of mega-amperes, Phys. Plasmas 12 (2005) 052705.

    [21] V.P. Smirnov, S.V. Zakharov, E.V. Grabovski, Increase in radiation intensity in a quasi-spherical double liner/dynamic hohlraum system, JETP Lett. 81 (2005) 442-447.

    [22] E.V. Grabovskii, A.N. Gritsuk, V.P. Smirnov, V.V. Aleksandrov, G.M. Oleinik, et al., Current implosion of quasi-spherical wire arrays, JETP Lett. 89 (2009) 315-318.

    [23] Yanyun Chu, Zhenghong Li, Jianlun Yang, Ning Ding, Rongkun Xu, et al., Simulation of the quasi-spherical wire-array implosion dynamics based on a multi-element model, Plasma Phys. Contr. Fusion 54 (2012) 105020.

    [24] Yang Zhang, Ning Ding, Zhenghong Li, Rongkun Xu, Dingyang Chen, et al., Realization of quasi-spherical implosion using pre-shaped prolate wire arrays with a compression foam target inside, Phys. Plasmas 22 (2015) 020703.

    [25] R. Ramis, J. Meyer-ter-Vehn, MULTI-IFEdA one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations, Comput. Phys. Commun. 203 (2016) 226-237.

    [26] Fuyuan Wu, Yanyun Chu, Fan Ye, Zhenghong Li, Jianlun Yang, Onedimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI, Acta Phys. Sin. 66 (2017) 215201.

    [27] T.W.L. Sanford, G.O. Allshouse, B.M. Marder, T.J. Nash, R.C. Mock, et al., Improved symmetry greatly increases X-ray power from wire-array Z-pinches, Phys. Rev. Lett. 77 (1996) 5063.

    [28] S.V. Lebedev, F.N. Beg, S.N. Bland, J.P. Chittenden, A.E. Dangor, et al., Snowplow-like behavior in the implosion phase of wire array Z pinches, Phys. Plasmas 9 (2002) 2293.

    [29] A.A. Esaulov, V.L. Kantsyrev, A.S. Safronova, A.L. Velikovich, I.K. Shrestha, et al., Wire ablation dynamics model and its application to imploding wire arrays of different geometries, Phys. Rev. E 86 (2012) 046404.

    [30] K. Lan, Y. Zhang, Theoretical studies of aluminum wire array Z-pinch implosions with varying masses and radii, Eur. Phys. J. Appl. Phys. 19 (2002) 103.

    [31] J.E. Bailey, G.A. Chandler, S.A. Slutz, G.R. Bennett, G. Cooper, et al., X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum, Phys. Rev. Lett. 89 (2002) 095004.

    [32] Delong Xiao, Shunkai Sun, Yingkui Zhao, Ning Ding, Jiming Wu, et al., Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums, Phys. Plasmas 22 (2015) 052709.

    [33] T.J. Nash, M.S. Derzon, G.A. Chandler, R. Leeper, D. Fehl, et al., Hightemperature dynamic hohlraums on the pulsed power driver Z, Phys. Plasmas 6 (1999) 2023-2029.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2018, 3(5): 248
    Download Citation