• Acta Physica Sinica
  • Vol. 69, Issue 1, 014203-1 (2020)
Ling-Jun Meng1, Meng-Yu Wang1, Yuan Shen1, Yu Yang1, Wen-Bin Xu2, Lei Zhang1, and Ke-Yi Wang1、*
Author Affiliations
  • 1Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
  • 2Science and Technology on Optical Radiation Laboratory, Beijing 100039, China
  • show less
    DOI: 10.7498/aps.69.20191265 Cite this Article
    Ling-Jun Meng, Meng-Yu Wang, Yuan Shen, Yu Yang, Wen-Bin Xu, Lei Zhang, Ke-Yi Wang. Triple-layer-coated microspheres for refractive index sensor with internally referenced self-compensated thermal effect[J]. Acta Physica Sinica, 2020, 69(1): 014203-1 Copy Citation Text show less
    Schematic drawing of a coupled triple-layer-coated microsphere model: (a) Triple-layer-coated microsphere model; (b) 2D simulation model.耦合三层膜结构微球腔模型示意图 (a)三层膜结构微球腔模型; (b)二维仿真模型
    Fig. 1. Schematic drawing of a coupled triple-layer-coated microsphere model: (a) Triple-layer-coated microsphere model; (b) 2D simulation model.耦合三层膜结构微球腔模型示意图 (a)三层膜结构微球腔模型; (b)二维仿真模型
    Electric field distributions of the inner and outer modes and the distributions along the radial direction with a various .不同中间膜层厚度时内外模式的电场径向分布曲线及电场分布云图
    Fig. 2. Electric field distributions of the inner and outer modes and the distributions along the radial direction with a various . 不同中间膜层厚度时内外模式的电场径向分布曲线及电场分布云图
    (a) The transmission spectrum of the microsphere when nm; (b) the outer mode (m = 148); (c) the inner mode (m = 140).(a) nm时球腔的透射谱; (b)外层模式(m = 148); (c)内层模式(m = 140)
    Fig. 3. (a) The transmission spectrum of the microsphere when nm; (b) the outer mode (m = 148); (c) the inner mode (m = 140). (a) nm时球腔的透射谱; (b)外层模式(m = 148); (c)内层模式(m = 140)
    Transmission spectra for the outer mode (a) and the inner mode (c) with the change of the external environment RI; The relationship between the shift of the resonance wavelength and the change of the external environment RI for the outer mode (b) and the inner mode (d).外层模式(a)与内层模式(c)透射谱随外界环境折射率的变化趋势; 外层模式(b)与内层模式(d)谐振波长偏移量与外界环境折射率变化量的关系
    Fig. 4. Transmission spectra for the outer mode (a) and the inner mode (c) with the change of the external environment RI; The relationship between the shift of the resonance wavelength and the change of the external environment RI for the outer mode (b) and the inner mode (d). 外层模式(a)与内层模式(c)透射谱随外界环境折射率的变化趋势; 外层模式(b)与内层模式(d)谐振波长偏移量 与外界环境折射率变化量 的关系
    The relationship between the resonance wavelength and the environment temperature for the outer mode (a) and the inner mode (b).外层模式(a)与内层模式(b)谐振波长与环境温度的关系
    Fig. 5. The relationship between the resonance wavelength and the environment temperature for the outer mode (a) and the inner mode (b). 外层模式(a)与内层模式(b)谐振波长 与环境温度 的关系
    The refractive index sensitivity (a) and temperature sensitivity (b) for the inner mode and the outer mode with a various .不同中间层厚度时内外模式的折射率灵敏度(a)和温度灵敏度(b)
    Fig. 6. The refractive index sensitivity (a) and temperature sensitivity (b) for the inner mode and the outer mode with a various . 不同中间层厚度 时内外模式的折射率灵敏度(a)和温度灵敏度(b)
    Ling-Jun Meng, Meng-Yu Wang, Yuan Shen, Yu Yang, Wen-Bin Xu, Lei Zhang, Ke-Yi Wang. Triple-layer-coated microspheres for refractive index sensor with internally referenced self-compensated thermal effect[J]. Acta Physica Sinica, 2020, 69(1): 014203-1
    Download Citation