• Optics and Precision Engineering
  • Vol. 32, Issue 12, 1941 (2024)
Xijiang CHEN1,2,3, Xi SUN2,*, Bufan ZHAO2, Qing AN1, and Xianquan HAN4
Author Affiliations
  • 1School of Artificial Intelligence, Wuchang University of Technology, Wuhan430223,China
  • 2School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan430070,China
  • 3Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of Natural Resources, East China University of Technology, Nanchang001,China
  • 4Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, Wuhan30019,China
  • show less
    DOI: 10.37188/OPE.20243212.1941 Cite this Article
    Xijiang CHEN, Xi SUN, Bufan ZHAO, Qing AN, Xianquan HAN. Part segmentation method of point cloud considering optimal allocation and optimal mask[J]. Optics and Precision Engineering, 2024, 32(12): 1941 Copy Citation Text show less
    References

    [1] R Q CHARLES, S HAO, K C MO et al. PointNet: deep learning on point sets for 3D classification and segmentation, 77-85(2017).

    [2] C R QI, L YI, H SU et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. arXiv, 1706-02413(2017). http://arxiv.org/abs/1706.02413

    [3] Y WANG, Y B SUN, Z W LIU et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 38, 1-12(2019).

    [4] Y LI, R BU, M SUN et al. PointCNN: Convolution on Χ-transformed points, 31(2018).

    [5] Y R SHEN, C FENG, Y Q YANG et al. Mining point cloud local structures by kernel correlation and graph pooling, 4548-4557(2018).

    [6] W X WU, Z A QI, F X LI. PointConv: deep convolutional networks on 3D point clouds, 9613-9622(2019).

    [7] H THOMAS, C R QI, J E DESCHAUD et al. KPConv: flexible and deformable convolution for point clouds, 6410-6419(2019).

    [8] M T XU, R Y DING, H S ZHAO et al. PAConv: position adaptive convolution with dynamic kernel assembling on point clouds, 3172-3181(2021).

    [9] A HALEVY, P NORVIG, F PEREIRA. The unreasonable effectiveness of data. IEEE Intelligent Systems, 24, 8-12(2009).

    [10] C SUN, A SHRIVASTAVA, S SINGH et al. Revisiting unreasonable effectiveness of data in deep learning era, 843-852(2017).

    [11] Y Chen, V T Hu, E Gavves et al. Pointmixup: augmentation for point clouds, 330-345(28).

    [12] A KRIZHEVSKY, I SUTSKEVER, G E HINTON. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60, 84-90(2017).

    [13] Y LECUN, L BOTTOU, Y BENGIO et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324(1998).

    [14] F J MORENO-BAREA, F STRAZZERA, J M JEREZ et al. Forward noise adjustment scheme for data augmentation, 728-734(2018).

    [15] R WU, S G YAN, Y SHAN et al. Deep Image: Scaling up Image Recognition. arXiv, 1501-02876(2015). http://arxiv.org/abs/1501.02876

    [16] H INOUE. Data augmentation by pairing samples for images classification. arXiv preprint(2018).

    [17] Z ZHONG, L ZHENG, G L KANG et al. Random erasing data augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 13001-13008(2020).

    [18] T DEVRIES, G W TAYLOR. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv, 1708-04552(2017). http://arxiv.org/abs/1708.04552

    [19] P G CHEN, S LIU, H S ZHAO et al. GridMask Data Augmentation. arXiv, 2001-04086(2020). http://arxiv.org/abs/2001.04086

    [20] H Y ZHANG, M CISSE, Y N DAUPHIN et al. Mixup: Beyond Empirical Risk Minimization. arXiv, 1710-09412(2017). http://arxiv.org/abs/1710.09412

    [21] S YUN, D HAN, S CHUN et al. CutMix: Regularization strategy to train strong classifiers with localizable features, 6022-6031(2019).

    [22] A CRESWELL, T WHITE, V DUMOULIN et al. Generative adversarial networks: an overview. IEEE Signal Processing Magazine, 35, 53-65(2018).

    [23] E D CUBUK, B ZOPH, D MANE et al. AutoAugment: Learning Augmentation Policies from Data. arXiv, 1805-09501(2018). http://arxiv.org/abs/1805.09501

    [24] S V SHESHAPPANAVAR, V V SINGH, C KAMBHAMETTU. PatchAugment: local neighborhood augmentation in point cloud classification, 2118-2127(2021).

    [25] S KIM, S LEE, D HWANG et al. Point cloud augmentation with weighted local transformations, 528-537(2021).

    [26] R H LI, X Z LI, P A HENG et al. PointAugment: an auto-augmentation framework for point cloud classification, 6377-6386(2020).

    [27] J ZHANG, L CHEN, B OUYANG et al. Pointcutmix: Regularization strategy for point cloud classification. Neurocomputing, 505, 58-67(2022).

    [28] D LEE, J LEE, J LEE et al. Regularization strategy for point cloud via rigidly mixed sample, 15895-15904(2021).

    [29] A F M S UDDIN, M S MONIRA, W SHIN et al. SaliencyMix: a Saliency Guided Data Augmentation Strategy for Better Regularization. arXiv, 2006-01791(2020). http://arxiv.org/abs/2006.01791

    [30] J H KIM, W CHOO, H O SONG. Puzzle Mix: exploiting saliency and local statistics for optimal mixup, 5275-5285(2020).

    [31] S L HUANG, X C WANG, D C TAO. SnapMix: semantically proportional mixing for augmenting fine-grained data, 35, 1628-1636(2021).

    [32] S LEE, M JEON, I KIM et al. Sagemix: saliency-guided mixup for point clouds, 35, 23580-23592(2022).

    [33] C H LEE, A VARSHNEY, D W JACOBS. Mesh saliency, 659-666(2005).

    [34] AX CHANG, T FUNKHOUSER, L GUIBAS et al. ShapeNet: an information-rich 3d model repository. arXiv preprint(2015).

    Xijiang CHEN, Xi SUN, Bufan ZHAO, Qing AN, Xianquan HAN. Part segmentation method of point cloud considering optimal allocation and optimal mask[J]. Optics and Precision Engineering, 2024, 32(12): 1941
    Download Citation