[2] MURRAY E, TSAI T, BARNETT S. A. A direct-methane fuel cell with a curia-based anode[J]. Nature, 1999, 400(6745): 649-651.
[8] LIU Y Y, MENG Y J, ZHANG W, et al. Industrial grade rare-earth triple-doped ceria applied for advanced low-temperature electrolyte layer-free fuel cells[J]. Int J Hydrog Energy, 2017, 42(34): 22273- 22279.
[9] ABBAS G, RAZA R, AHMAD M A, et al. Electrochemical investigation of mixed metal oxide nanocomposite electrode for low temperature solid oxide fuel cell[J]. Int J Mod Phys B, 2017, 31(27): 1750193-1750208 .
[12] SU H, HU Y H. Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels[J]. Cheml Eng J, 2020, 402: 126235-126255.
[14] RAZA R, ZHU B, RAFIQUE A, et al. Functional ceria-based nanocomposites for advanced low-temperature (300-600 ℃) solid oxide fuel cell: A comprehensive review[J]. Mater Today Energy, 2020, 15: 100373-100389.
[16] HUANG J, GAO Z, MAO Z. Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs[J]. Int J Hydrog Energy, 2010, 35(9): 4270-4275.
[17] KHAN I, ASGHAR M I, LUND P D, et al. High conductive (LiNaK)(2)CO3-Ce0.85Sm0.15O2 electrolyte compositions for IT-SOFC applications[J]. Int J Hydrog Energy, 2017, 42(32): 20904-20909.
[18] ZHAO Y, XIA C, WANG Y, et al. Quantifying multi-ionic conduction through doped ceria-carbonate composite electrolyte by a current-interruption technique and product analysis[J]. Int J Hydrog Energy, 2012, 37(10): 8556-8561.
[19] ZHAO Y F, XIONG D B, QIN H Y, et al. Nanocomposite electrode materials for low temperature solid oxide fuel cells using the ceria-carbonate composite electrolytes[J]. Int J Hydrog Energy, 2012, 37(24): 19351-19356.
[20] RAZA R, ZHU B, FRANSSON T H. Zn0.6Fe0.1Cu0.3/GDC composite anode for solid oxide fuel cell[J]. J Fuel Cell Sci Tech, 2011, 8(3): 10101-10105.
[21] HUANG J, GAO Z, MAO Z. Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs[J]. Int J Hydrog Energy, 2010, 35(9): 4270-4275.
[22] CHEN M M, ZHANG H J, FAN L D, et al. Ceria-carbonate composite for low temperature solid oxide fuel cell: Sintering aid and composite effect[J]. Int J Hydrog Energy, 2014, 39(23): 12309-12316.
[23] JING Y F, LUND P, ASGHAR M I, et al. Non-doped CeO2-carbonate nanocomposite electrolyte for low temperature solid oxide fuel cells[J]. Ceram Int, 2020, 46(18): 29290-29296.
[24] FAN L, MA Y, WANG X, et al. Understanding the electrochemical mechanism of the core-shell ceria-LiZnO nanocomposite in a low temperature solid oxide fuel cell[J]. J Mater Chem A, 2014, 2(15): 5399-5407.
[25] ZHU B, MA Y, WANG X, et al. A fuel cell with a single component functioning simultaneously as the electrodes and electrolyte[J]. Electrochem Commun, 2011, 13(3): 225-227.
[26] ZHU B, RAZA R, ABBAS G, et al. An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity[J]. Adv Funct Mater, 2011, 21(13): 2465-2469.
[27] ZHU B, RAZA R, QIN H, et al. Fuel cells based on electrolyte and non-electrolyte separators[J]. Energ Environ Sci, 2011, 4(8): 2986- 2992.
[28] AFZAL M, XIA C, ZHU B. Lanthanum-doped calcium manganite (La0.1Ca0.9MnO3) cathode for advanced solid oxide fuel cell (SOFC)[J]. Mater Today Proc, 2016, 3(8): 2698-2706.
[29] CHEN G, SUN W, LUO Y, et al. Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells[J]. Int J Hydrog Energy, 2018, 43(1): 417-425.
[30] HE Y, CHEN G, ZHANG X, et al. Mechanism for major improvement in SOFC electrolyte conductivity when using lithium compounds as anode[J]. Acs Appl Energ Mater, 2020, 3(5): 4134-4138.
[31] YANG D, CHEN G, LIU H, et al. Electrochemical performance of a Ni0.8Co0.15Al0.05LiO2 cathode for a low temperature solid oxide fuel cell[J]. Int J Hydrog Energy, 2020, 46(17): 10438-10447.
[32] MUHAMMAD I A, SAMI J, RIINA JOKIRANTA, et al. Wide bandgap oxides for low-temperature single-layered nanocomposite fuel cell[J]. Nano Energy, 2018, 53: 391-397.
[33] AFZAL M, SALEEMI M, WANG B Y, et al. Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Sm0.2Ce0.8O1.9) and Schottky barrier[J]. J Power Sources, 2016, 328: 136-142.
[34] JO S, SHARMA B, PARK D H, et al. Materials and nano-structural processes for use in solid oxide fuel cells: A review[J]. J Korean Ceram Soc, 2020, 57(2): 135-151.
[35] LU Y Z, AFZAL M, ZHU B, et al. Nanotechnology based green energy conversion devices with multifunctional materials at low temperatures[J]. Recent Pat Nanotech, 2017, 11(2): 85-92.
[36] CHEN G, SUN W, LUO Y, et al. Advanced fuel cell based on new nanocrystalline structure Gd0.1Ce0.9O2 electrolyte[J]. ACS Appl Mater Interfaces, 2019, 11(11): 10642-10650.
[37] CHEN G, ZHU B, DENG H, et al. Advanced fuel cell based on perovskite La-SrTiO3 semiconductor as the electrolyte with superoxide-ion conduction[J]. Acs Appl Mater Inter, 2018, 10(39): 33179-33186.
[38] CHEN G, LIU H, HE Y, et al. Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte[J]. J Mater Chem A, 2019, 7(16): 9638-9645.
[39] LIU X Q, DONG W J, XIA C, et al. Study on charge transportation in the layer-structured oxide composite of SOFCs[J]. Int J Hydrog Energy, 2018, 43(28): 12773-12781.