• Chinese Journal of Lasers
  • Vol. 50, Issue 8, 0802304 (2023)
Yujie Gui1,2,3, Yufeng Wang1,3,*, Yong Yang1,3, and Wenwu Zhang1,3
Author Affiliations
  • 1Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang , China
  • 2School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang , China
  • 3Zhejiang Provincial Key Laboratory of Aero-Engine Extreme Manufacturing Technology, Ningbo 315201, Zhejiang , China
  • show less
    DOI: 10.3788/CJL221113 Cite this Article Set citation alerts
    Yujie Gui, Yufeng Wang, Yong Yang, Wenwu Zhang. Experimental Study on Synchronous Nanosecond Laser‑Assisted Electrochemical Processing of Ti‑6Al‑4V Titanium Alloy[J]. Chinese Journal of Lasers, 2023, 50(8): 0802304 Copy Citation Text show less
    References

    [1] Zhang G G, Sun Y L, Fan W L et al. Research progress and future development of surface integrity on machined surface of titanium alloys[J]. Aeronautical Manufacturing Technology, 65, 36-55, 79(2022).

    [2] Gu J, Liu Z P, Xu Y J et al. Titanium alloy and its laser processing technology in aviation manufacturing[J]. Applied Laser, 40, 547-555(2020).

    [3] Fan P, Pan J T, Ge Y M et al. Finite element analysis of residual stress in TC4/TC11 titanium alloy gradient material produced by laser additive manufacturing[J]. Chinese Journal of Lasers, 48, 1802012(2021).

    [4] Kadivar M, Azarhoushang B, Daneshi A et al. Surface integrity in micro-grinding of Ti6Al4V considering the specific micro-grinding energy[J]. Procedia CIRP, 87, 181-185(2020).

    [5] Liang X L, Liu Z Q, Yao G H et al. Investigation of surface topography and its deterioration resulting from tool wear evolution when dry turning of titanium alloy Ti-6Al-4V[J]. Tribology International, 135, 130-142(2019).

    [6] Wang P Q, Wang Y Y, Wu M J et al. Effects of heat treatment on microstructure, mechanical properties, and anisotropy of laser melting deposited TC4[J]. Chinese Journal of Lasers, 48, 1002116(2021).

    [7] Liang X L, Liu Z Q, Wang B. Multi-pattern failure modes and wear mechanisms of WC-Co tools in dry turning Ti-6Al-4V[J]. Ceramics International, 46, 24512-24525(2020).

    [8] Ren P, Yang X J, Li X et al. Manufacture technology of afterburner body with grid structure[J]. Aeronautical Manufacturing Technology, 58, 69-72(2015).

    [9] Kumar R, Roy S, Gunjan P et al. Analysis of MRR and surface roughness in machining Ti-6Al-4V ELI titanium alloy using EDM process[J]. Procedia Manufacturing, 20, 358-364(2018).

    [10] Zhang R, Wan Y, Ai X et al. Preparation of micro-nanostructure on titanium implants and its bioactivity[J]. Transactions of Nonferrous Metals Society of China, 26, 1019-1024(2016).

    [11] Zhang T Z, Zhang C, Li J et al. Formation mechanism of recast layer in millisecond laser drilling of Ti6Al4V alloys[J]. Acta Optica Sinica, 37, 0214001(2017).

    [12] Wang M L, Qu N S. Improving material removal rate in macro electrolyte jet machining of TC4 titanium alloy through back-migrating jet channel[J]. Journal of Manufacturing Processes, 71, 489-500(2021).

    [13] Liu Y, Qu N S. Electrochemical milling of TB6 titanium alloy in NaNO3 solution[J]. Journal of the Electrochemical Society, 166, E35-E49(2019).

    [14] Mishra K, Dey D, Sarkar B R et al. Modeling on volumetric material removal for fabrication of complex shapes by EC milling of Ti6Al4V[J]. Journal of the Electrochemical Society, 165, E388-E396(2018).

    [15] Klocke F, Zeis M, Klink A et al. Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium- and nickel-based blisks[J]. CIRP Journal of Manufacturing Science and Technology, 6, 198-203(2013).

    [16] Speidel A, Mitchell-Smith J, Walsh D A et al. Electrolyte jet machining of titanium alloys using novel electrolyte solutions[J]. Procedia CIRP, 42, 367-372(2016).

    [17] Speidel A, Mitchell-Smith J, Bisterov I et al. Oscillatory behaviour in the electrochemical jet processing of titanium[J]. Journal of Materials Processing Technology, 273, 116264(2019).

    [18] Xu Z Y, Chen X Z, Zhou Z S et al. Electrochemical machining of high-temperature titanium alloy Ti60[J]. Procedia CIRP, 42, 125-130(2016).

    [19] Chen X Z, Xu Z Y, Zhu D et al. Experimental research on electrochemical machining of titanium alloy Ti60 for a blisk[J]. Chinese Journal of Aeronautics, 29, 274-282(2016).

    [20] Wang X D, Qu N S, Fang X L. Reducing stray corrosion in jet electrochemical milling by adjusting the jet shape[J]. Journal of Materials Processing Technology, 264, 240-248(2019).

    [21] Wang Y F. Development of laser and electrochemical machining based on internal total reflection[J]. Journal of the Electrochemical Society, 166, E481-E484(2019).

    [22] Wang Y F, Yang F, Zhang W W. Research on laser and electrochemical hybrid machining of small holes based on total reflection of laser beam[J]. Electromachining&Mould, 49-54(2020).

    [23] Yang Z W. Fundamental research on the application of high efficiency ECM for TC4 titanium alloy profiled cavities[D], 46-47(2018).

    [24] Wang Y F, Yang F, Zhang G Y et al. Fabrication of deep and small holes by synchronized laser and shaped tube electrochemical machining (laser-STEM) hybrid process[J]. The International Journal of Advanced Manufacturing Technology, 105, 2721-2731(2019).

    [25] Wang S W, Ding Y, Cheng B et al. Mechanism and research advances of water-jet guided laser micromachining[J]. Chinese Journal of Lasers, 49, 1002404(2022).

    Yujie Gui, Yufeng Wang, Yong Yang, Wenwu Zhang. Experimental Study on Synchronous Nanosecond Laser‑Assisted Electrochemical Processing of Ti‑6Al‑4V Titanium Alloy[J]. Chinese Journal of Lasers, 2023, 50(8): 0802304
    Download Citation