• Chinese Journal of Lasers
  • Vol. 50, Issue 23, 2301008 (2023)
Ting Ma1、2, Qiao Lu1, Chenliang Zhao1、2, Jindong Ma1, and Qinghe Mao1、2、3、*
Author Affiliations
  • 1Anhui Provincial Key Laboratory of Photonics Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • 2University of Science and Technology of China, Hefei 230026, Anhui, China
  • 3Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, Anhui, China
  • show less
    DOI: 10.3788/CJL230539 Cite this Article Set citation alerts
    Ting Ma, Qiao Lu, Chenliang Zhao, Jindong Ma, Qinghe Mao. Mid-Infrared DFG Comb with Broadband and Wide Tunable Range Based on All Polarization-Maintaining Fibers[J]. Chinese Journal of Lasers, 2023, 50(23): 2301008 Copy Citation Text show less
    References

    [1] Malara P, Maddaloni P, Gagliardi G et al. Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3-μm[J]. Optics Express, 16, 8242-8249(2008).

    [2] Galli I, Bartalini S, Borri S et al. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection[J]. Physical Review Letters, 107, 270802(2011).

    [3] Muraviev A, Smolski V O, Loparo Z E et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs[J]. Nature Photonics, 12, 209-214(2018).

    [4] Feng X, Zhang Z W. Broadband mid-infrared light based on difference frequency generators[J]. Chinese Journal of Lasers, 49, 0101018(2022).

    [5] Adler F, Cossel K C, Thorpe M J et al. Phase-stabilized, 1.5 W frequency comb at 2.8‒4.8 μm[J]. Optics Letters, 34, 1330-1332(2009).

    [6] Hugi A, Villares G, Blaser S et al. Mid-infrared frequency comb based on a quantum cascade laser[J]. Nature, 492, 229-233(2012).

    [7] Wang C Y, Herr T, Del’Haye P et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators[J]. Nature Communications, 4, 1345(2013).

    [8] Guo H R, Herkommer C, Billat A et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides[J]. Nature Photonics, 12, 330-335(2018).

    [9] Keilmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics Letters, 29, 1542-1544(2004).

    [10] Zhou J Q, Pan W W, Zhang L et al. Research advances in mode-locked fiber lasers based on nonlinear loop mirror[J]. Chinese Journal of Lasers, 46, 0508013(2019).

    [11] Ruehl A, Gambetta A, Hartl I et al. Widely-tunable mid-infrared frequency comb source based on difference frequency generation[J]. Optics Letters, 37, 2232-2234(2012).

    [12] Churin D, Kieu K, Norwood R A et al. Efficient frequency comb generation in the 9 μm region using compact fiber sources[J]. IEEE Photonics Technology Letters, 26, 2271-2274(2014).

    [13] Novák O, Krogen P R, Kroh T et al. Femtosecond 8.5 μm source based on intrapulse difference-frequency generation of 2.1 μm pulses[J]. Optics Letters, 43, 1335-1338(2018).

    [14] Gambetta A, Ramponi R, Marangoni M. Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator[J]. Optics Letters, 33, 2671-2673(2008).

    [15] Keilmann F, Amarie S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 33, 479-484(2012).

    [16] Zhou L, Liu Y, Lou H P et al. Octave mid-infrared optical frequency comb from Er∶fiber-laser-pumped aperiodically poled Mg∶LiNbO3[J]. Optics Letters, 45, 6458-6461(2020).

    [17] Zhang Z W, Feng X, Shi J Q et al. Broadband mid-infrared coherent light source from fiber-laser-pumped difference frequency generators based on cascaded crystals[J]. Optics Express, 28, 14310-14318(2020).

    [18] Lee K F, Hensley C J, Schunemann P G et al. Midinfrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide[J]. Optics Express, 25, 17411-17416(2017).

    [19] Su X Y, Zhu R X, Wang B L et al. Generation of 8‒20 μm mid-infrared ultrashort femtosecond laser pulses via difference frequency generation[J]. Photonics, 9, 372(2022).

    [20] Ma J D, Wu H Y, Lu Q et al. Fiber-type difference frequency generation infrared optical frequency comb based on the femtosecond pulses generated by a mode-locked fiber laser[J]. Acta Physica Sinica, 67, 094207(2018).

    [21] Sotor J, Martynkien T, Schunemann P G et al. All-fiber mid-infrared source tunable from 6 to 9 μm based on difference frequency generation in OP-GaP crystal[J]. Optics Express, 26, 11756-11763(2018).

    [22] Ma J D, Lu Q, Duan D et al. A broadband infrared DFG optical comb using all-PM nonlinear pulse fiber amplification technique[J]. IEEE Photonics Technology Letters, 31, 439-442(2019).

    [23] Wu H Y, Shi L, Ma T et al. Design and development technique for optical frequency comb based on femtosecond fiber lasers[J]. Chinese Journal of Lasers, 44, 0601008(2017).

    [24] Fermann M E, Kruglov V I, Thomsen B C et al. Self-similar propagation and amplification of parabolic pulses in optical fibers[J]. Physical Review Letters, 84, 6010-6013(2000).

    [25] Luo H, Zhan L, Zhang L et al. Generation of 22.7-fs 2.8-nJ pulses from an erbium-doped all-fiber laser via single-stage soliton compression[J]. Journal of Lightwave Technology, 35, 3780-3784(2017).

    [26] Zhao J, Li W X, Wang C et al. Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation[J]. Optics Express, 22, 32214-32219(2014).

    Ting Ma, Qiao Lu, Chenliang Zhao, Jindong Ma, Qinghe Mao. Mid-Infrared DFG Comb with Broadband and Wide Tunable Range Based on All Polarization-Maintaining Fibers[J]. Chinese Journal of Lasers, 2023, 50(23): 2301008
    Download Citation