• Chinese Optics Letters
  • Vol. 22, Issue 2, 021401 (2024)
Jiawei Fan1, Youlun Ju1, Chenchen Jiang1, Yue Yuan2, Dong Yan1, Xingbang Yang1, Xiaoming Duan1、3, Tongyu Dai1、*, Baoquan Yao1, and Jiaze Wu1、**
Author Affiliations
  • 1National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
  • 2Department of Physics and Chemistry, PLA Army Academy of Special Operations, Guangzhou 510507, China
  • 3Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
  • show less
    DOI: 10.3788/COL202422.021401 Cite this Article Set citation alerts
    Jiawei Fan, Youlun Ju, Chenchen Jiang, Yue Yuan, Dong Yan, Xingbang Yang, Xiaoming Duan, Tongyu Dai, Baoquan Yao, Jiaze Wu. 2.32 W anti-misaligned Er:LuAG single-longitudinal-mode laser in the double corner-cube-retroreflector resonator and MOPA system[J]. Chinese Optics Letters, 2024, 22(2): 021401 Copy Citation Text show less
    Schematic diagram of the Er:LuAG SLM oscillator and the MOPA system. FR, Faraday rotator; F-P, Fabry-Perot etalon.
    Fig. 1. Schematic diagram of the Er:LuAG SLM oscillator and the MOPA system. FR, Faraday rotator; F-P, Fabry-Perot etalon.
    Absorption cross section of the Er:LuAG crystal and the wavelength of the pump laser. Inset: the absorptivity of the Er:LuAG crystal under different pump powers.
    Fig. 2. Absorption cross section of the Er:LuAG crystal and the wavelength of the pump laser. Inset: the absorptivity of the Er:LuAG crystal under different pump powers.
    (a) Value of (A + D)/2 versus the thermal focal length of the Er:LuAG crystal. (b) Oscillating spot in the double CCRs Er:LuAG oscillator under different thermal focal lengths.
    Fig. 3. (a) Value of (A + D)/2 versus the thermal focal length of the Er:LuAG crystal. (b) Oscillating spot in the double CCRs Er:LuAG oscillator under different thermal focal lengths.
    Output power of the Er:LuAG oscillator without the Faraday rotator. Inset: Fabry–Perot spectrum.
    Fig. 4. Output power of the Er:LuAG oscillator without the Faraday rotator. Inset: Fabry–Perot spectrum.
    Output characteristics of the Er:LuAG SLM oscillator. (a) The output power. (b) The output wavelength and the Fabry-Perot spectrum.
    Fig. 5. Output characteristics of the Er:LuAG SLM oscillator. (a) The output power. (b) The output wavelength and the Fabry-Perot spectrum.
    Influence of the CCR on the Er:LuAG SLM power. (a) Perpendicular to the CCR direction. (b) Parallel to the CCR line. (c) Rotating along the point on the axis.
    Fig. 6. Influence of the CCR on the Er:LuAG SLM power. (a) Perpendicular to the CCR direction. (b) Parallel to the CCR line. (c) Rotating along the point on the axis.
    The gain and the amplified power versus the seed power.
    Fig. 7. The gain and the amplified power versus the seed power.
    Laser properties of the Er:LuAG single-pass amplifier. (a) Beam qualities M2 of the 2.32 W SLM laser. (b) The power stability within 30 minutes.
    Fig. 8. Laser properties of the Er:LuAG single-pass amplifier. (a) Beam qualities M2 of the 2.32 W SLM laser. (b) The power stability within 30 minutes.
    Wavelength (nm)Output Power (W)
    1649.21.59
    1649.41.09
    1649.61.61
    1650.10.50
    1650.30.66
    Table 1. The Relationship between the SLM Wavelength and the Output Power
    Jiawei Fan, Youlun Ju, Chenchen Jiang, Yue Yuan, Dong Yan, Xingbang Yang, Xiaoming Duan, Tongyu Dai, Baoquan Yao, Jiaze Wu. 2.32 W anti-misaligned Er:LuAG single-longitudinal-mode laser in the double corner-cube-retroreflector resonator and MOPA system[J]. Chinese Optics Letters, 2024, 22(2): 021401
    Download Citation