• Chinese Journal of Lasers
  • Vol. 44, Issue 8, 802003 (2017)
Sun Yunhui*, Zhou Jianzhong, Sheng Jie, Huang Shu, Xu Suqiang, Li Jing, and Xu Gaofeng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/CJL201744.0802003 Cite this Article Set citation alerts
    Sun Yunhui, Zhou Jianzhong, Sheng Jie, Huang Shu, Xu Suqiang, Li Jing, Xu Gaofeng. Tensile Property and Fracture Analysis of 2024-T351 Aluminum Alloys by Cryogenic Laser Peening[J]. Chinese Journal of Lasers, 2017, 44(8): 802003 Copy Citation Text show less
    References

    [1] Ahn J, Chen L, He E et al. Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3[J]. Journal of Manufacturing Processes, 25, 26-36(2017). http://www.sciencedirect.com/science/article/pii/S1526612516301244

    [2] Lu J Z, Luo K Y, Zhang Y K et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 58, 3984-3994(2010). http://www.sciencedirect.com/science/article/pii/S1359645410001710

    [3] Wu M, Liu Y Z, Wang T et al. Deformation behavior and characteristics of sintered porous 2024 aluminum alloy compressed in a semisolid state[J]. Materials Science and Engineering A, 674, 144-150(2016). http://www.sciencedirect.com/science/article/pii/S0921509316308954

    [4] Rodopoulos C A, Kermanidis A T, Statnikov E et al. The effect of surface engineering treatments on the fatigue behavior of 2024-T351 aluminum alloy[J]. Journal of Materials Engineering and Performance, 16, 30-34(2007). http://link.springer.com/article/10.1007/s11665-006-9004-0

    [5] Liu Y G, Li H M, Li M Q. Characterization of surface layer in TC17 alloy treated by air blast shot peening[J]. Materials & Design, 65, 120-126(2015). http://www.sciencedirect.com/science/article/pii/S0261306914007092

    [6] Wei W, Wang S L, Wei K X et al. Microstructure and tensile properties of Cu-Al alloys processed by ECAP and rolling at cryogenic temperature[J]. Journal of Alloys and Compounds, 678, 506-510(2016). http://www.sciencedirect.com/science/article/pii/S0925838816309835

    [7] Magalhães D C C, Hupalo M F, Cintho O M. Natural aging behavior of AA7050 Al alloy after cryogenic rolling[J]. Materials Science and Engineering A, 593, 1-7(2014). http://www.sciencedirect.com/science/article/pii/S0921509313012367

    [8] Meng Xiankai, Zhou Jianzhong, Su Chun et al. Effect of temperature on surface mechanical property of 2024 aluminum alloy treated by laser peening[J]. Chinese J Lasers, 43, 1002003(2016).

    [9] Zhou Jianzhong, Han Yuhang, Huang Shu et al. Effect of different process temperature on residual stress and nano-hardness of warm laser peened IN718 superalloy[J]. Chinese J Lasers, 42, 0703001(2015).

    [10] Zhang Haifeng, Huang Shu, Sheng Jie et al. Thermal relaxation of residual stress and grain evolution in laser peening IN718 alloy[J]. Chinese J Lasers, 43, 0203008(2016).

    [11] Huang Shu. Investigation of laser peening on the fatigue crack growth properties and life extension mechanism of 6061-T6 aluminum alloy[D]. Zhenjiang: Jiangsu University(2012).

    [12] Salimianrizi A, Foroozmehr E, Badrossamay M et al. Effect of laser shock peening on surface properties and residual stress of Al6061-T6[J]. Optics and Lasers in Engineering, 77, 112-117(2016). http://www.sciencedirect.com/science/article/pii/S0143816615001918

    [13] Ren X D, Ruan L, Yuan S Q et al. Dislocation polymorphism transformation of 6061-T651 aluminum alloy processed by laser shock processing: Effect of tempering at the elevated temperatures[J]. Materials Science and Engineering A, 578, 96-102(2013). http://www.sciencedirect.com/science/article/pii/S0921509313004164

    [14] Huang S, Sheng J, Zhou J Z et al. On the influence of laser peening with different coverage areas on fatigue response and fracture behavior of Ti-6Al-4V alloy[J]. Engineering Fracture Mechanics, 147, 72-82(2015). http://www.sciencedirect.com/science/article/pii/S0013794415004774

    [15] Sheng J, Huang S, Zhou J Z et al. Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy[J]. Optics and Laser Technology, 77, 169-176(2016). http://www.sciencedirect.com/science/article/pii/S0030399215301213

    [16] Huang S, Wang Z W, Sheng J et al. Residual stress distribution and microstructure evolution of AA 6061-T6 treated by warm laser peening[J]. Metals, 6, 6110292(2016). http://www.researchgate.net/publication/310741093_Residual_Stress_Distribution_and_Microstructure_Evolution_of_AA_6061-T6_Treated_by_Warm_Laser_Peening

    [17] Park D H, Choi S W, Kim J H et al. Cryogenic mechanical behavior of 5000- and 6000-series aluminum alloys: Issues on application to offshore plants[J]. Cryogenics, 68, 44-58(2015). http://www.sciencedirect.com/science/article/pii/S0011227515000223

    [18] Yin J G, Lu J, Ma H T et al. Nanostructural formation of fine grained aluminum alloy by severe plastic deformation at cryogenic temperature[J]. Journal of Materials Science, 39, 2851-2854(2004). http://link.springer.com/article/10.1023/B%3AJMSC.0000021463.83899.b3

    [19] Nayan N. Murty S V S N, Jha A K, et al. Mechanical properties of aluminium-copper-lithium alloy AA2195 at cryogenic temperatures[J]. Materials & Design, 58, 445-450(2014).

    [20] Moreno-Valle E C, Sabirov I, Perez-Prado M T et al. . Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures[J]. Materials Letters, 65, 2917-2919(2011). http://www.sciencedirect.com/science/article/pii/S0167577X11007002

    [21] Shahsavari A, Karimzadeh F, Rezaeian A et al. Significant increase in tensile strength and hardness in 2024 aluminum alloy by cryogenic rolling[J]. Procedia Materials Science, 11, 84-88(2015). http://www.sciencedirect.com/science/article/pii/S2211812815004538

    [22] Ye C, Suslov S, Lin D et al. Microstructure and mechanical properties of copper subjected to cryogenic laser shock peening[J]. Journal of Applied Physics, 110, 083504(2011). http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=6099371

    [23] Ye C, Suslov S, Lin D et al. Cryogenic ultrahigh strain rate deformation induced hybrid nanotwinned microstructure for high strength and high ductility[J]. Journal of Applied Physics, 115, 213519(2014). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6827380

    [24] Ye C, Suslov S, Lin D et al. Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties[J]. Philosophical Magazine, 92, 1369-1389(2012). http://www.tandfonline.com/doi/full/10.1080/14786435.2011.645899

    [25] Chen Ding, Li Wenxian. Grain preferred orientation of Al and Al alloys through cryogenic treatment[J]. Journal of Central South University of Technology, 31, 544-547(2000).

    [26] Zhou J Z, Xu S Q, Huang S et al. Tensile properties and microstructures of a 2024-T351 aluminum alloy subjected to cryogenic treatment[J]. Metals, 6, 6110279(2016). http://www.researchgate.net/publication/310473341_Tensile_Properties_and_Microstructures_of_a_2024-T351_Aluminum_Alloy_Subjected_to_Cryogenic_Treatment

    Sun Yunhui, Zhou Jianzhong, Sheng Jie, Huang Shu, Xu Suqiang, Li Jing, Xu Gaofeng. Tensile Property and Fracture Analysis of 2024-T351 Aluminum Alloys by Cryogenic Laser Peening[J]. Chinese Journal of Lasers, 2017, 44(8): 802003
    Download Citation