• Chinese Journal of Lasers
  • Vol. 47, Issue 6, 601002 (2020)
Xu Jinjin, Zhang Xingyu*, Cong Zhenhua, Liu Zhaojun, Chen Xiaohan, Qin Zengguang, Gao Feilong, Wang Peng, Wang Zecheng, and Ming Na
Author Affiliations
  • School of Information Science and Engineering, Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao, Shandong 266237, China
  • show less
    DOI: 10.3788/CJL202047.0601002 Cite this Article Set citation alerts
    Xu Jinjin, Zhang Xingyu, Cong Zhenhua, Liu Zhaojun, Chen Xiaohan, Qin Zengguang, Gao Feilong, Wang Peng, Wang Zecheng, Ming Na. Tunable Nd 3+∶YAG/KTiOAsO4 Raman Lasers[J]. Chinese Journal of Lasers, 2020, 47(6): 601002 Copy Citation Text show less
    Schematic of experimental setup
    Fig. 1. Schematic of experimental setup
    Transmittance of M3
    Fig. 2. Transmittance of M3
    Spectrum of laser output from M3 with phase matching angle of 4.40°
    Fig. 3. Spectrum of laser output from M3 with phase matching angle of 4.40°
    Non-collinear phase matching schematic for SPS process
    Fig. 4. Non-collinear phase matching schematic for SPS process
    Transmittance curve of M3 when outputting first-order Raman laser
    Fig. 5. Transmittance curve of M3 when outputting first-order Raman laser
    Wavelengths of SPS Stokes laser and its first-order Raman laser versus phase-matching angle θ
    Fig. 6. Wavelengths of SPS Stokes laser and its first-order Raman laser versus phase-matching angle θ
    First-order Raman powers at different wavelengths
    Fig. 7. First-order Raman powers at different wavelengths
    Output power of 1116.34 nm Raman laser versus incident pumping power
    Fig. 8. Output power of 1116.34 nm Raman laser versus incident pumping power
    Powers of SPS Stokes laser and first-order Raman laser versus incident pumping power with tuning angle of 5.60° and pulse repetition frequency of 5 kHz
    Fig. 9. Powers of SPS Stokes laser and first-order Raman laser versus incident pumping power with tuning angle of 5.60° and pulse repetition frequency of 5 kHz
    Powers of 1064.16 nm initial fundamental laser and residual fundamental laser versus incident pumping power
    Fig. 10. Powers of 1064.16 nm initial fundamental laser and residual fundamental laser versus incident pumping power
    Waveforms of pulses with different wavelengths. (a) 1064.16 nm initial fundamental laser; (b) 1064.16 nm residual fundamental laser, 1088.12 nm SPS Stokes laser, and 1116.34 nm Raman laser
    Fig. 11. Waveforms of pulses with different wavelengths. (a) 1064.16 nm initial fundamental laser; (b) 1064.16 nm residual fundamental laser, 1088.12 nm SPS Stokes laser, and 1116.34 nm Raman laser
    Spot patterns of lasers with different wavelengths. (a) 1064.16 nm initial fundamental laser; (b) 1064.16 nm residual fundamental laser; (c) 1088.12 nm SPS Stokes laser; (d) 1116.34 nm first-order Raman laser
    Fig. 12. Spot patterns of lasers with different wavelengths. (a) 1064.16 nm initial fundamental laser; (b) 1064.16 nm residual fundamental laser; (c) 1088.12 nm SPS Stokes laser; (d) 1116.34 nm first-order Raman laser
    Xu Jinjin, Zhang Xingyu, Cong Zhenhua, Liu Zhaojun, Chen Xiaohan, Qin Zengguang, Gao Feilong, Wang Peng, Wang Zecheng, Ming Na. Tunable Nd 3+∶YAG/KTiOAsO4 Raman Lasers[J]. Chinese Journal of Lasers, 2020, 47(6): 601002
    Download Citation