[1] A G NICULESCU, C CHIRCOV, A C BÎRCĂ et al. Fabrication and applications of microfluidic devices: a review. International Journal of Molecular Sciences, 22, 2011(2021).
[2] I SHARMA, M THAKUR, S SINGH et al. Microfluidic devices as a tool for drug delivery and diagnosis: a review. International Journal of Applied Pharmaceutics, 95-102(2021).
[3] S KUSAMA, K SATO, Y MATSUI et al. Transdermal electroosmotic flow generated by a porous microneedle array patch. Nature Communications, 12, 658(2021).
[4] 陈雪叶,李铁川. 被动式微混合器微通道外形及障碍物布局[J]. 光学 精密工程,2015,23(10z):403-409. doi: 10.3788/OPE.20152313.0403CHENX Y, LIT CH. Micro-channel shapes and obstacle layout in passive micromixers [J]. Opt. Precision Eng., 2015,23(10z):403-409. (in Chinese). doi: 10.3788/OPE.20152313.0403
[5] 张贺, 杨爽, 揣荣岩, 等. 混沌流微混合器的性能优化[J]. 光学 精密工程, 2022, 30(3): 286-295. doi: 10.37188/OPE.20223003.0286ZHANGH, YANGSH, CHUAIR Y, et al. Performance optimization of chaotic flow micromixer[J]. Opt. Precision Eng., 2022, 30(3): 286-295.(in Chinese). doi: 10.37188/OPE.20223003.0286
[6] M G LEE, S CHOI, J K PARK. Rapid laminating mixer using a contraction-expansion array microchannel. Applied Physics Letters, 95(2009).
[7] K MATSUBARA, T NARUMI. Microfluidic mixing using unsteady electroosmotic vortices produced by a staggered array of electrodes. Chemical Engineering Journal, 288, 638-647(2016).
[8] H S SEO, Y J KIM. Effect of electrode positions on the mixing characteristics of an electroosmotic micromixer. Journal of Nanoscience and Nanotechnology, 14, 6167-6171(2014).
[9] S Y XIONG, X Y CHEN, H F CHEN et al. Numerical study on an electroosmotic micromixer with rhombic structure. Journal of Dispersion Science and Technology, 42, 1331-1337(2021).
[10] A FARAHINIA, J JAMAATI, H NIAZMAND et al. Numerical analysis of the heterogeneity effect on electroosmotic micromixers based on the standard deviation of concentration and mixing entropy index. Micromachines, 12, 1055(2021).
[11] A FARAHINIA, J JAMAATI, H NIAZMAND et al. The effect of heterogeneous surface charges on mixing in a combined electroosmotic/pressure-driven micromixer. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 1-13(2021).
[12] H L LV, X Y CHEN. New insights into the mixing behavior of Non-Newtonian fluid in electroosmotic micromixer. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44, 181(2022).
[13] Z CHEN, Y L WANG, S ZHOU. Numerical analysis of mixing performance in an electroosmotic micromixer with cosine channel walls. Micromachines, 13, 1933(2022).
[14] A ALIZADEH, W L HSU, M WANG et al. Electroosmotic flow: from microfluidics to nanofluidics. Electrophoresis, 42, 834-868(2021).
[15] T BORRVALL, J PETERSSON. Topology optimization of fluids in Stokes flow. International Journal for Numerical Methods in Fluids, 41, 77-107(2003).
[16] B S LAZAROV, O SIGMUND. Filters in topology optimization based on Helmholtz-type differential equations. International Journal for Numerical Methods in Engineering, 86, 765-781(2011).
[17] D LI. Encyclopedia of Microfluidics and Nanofluidics. Springer Science & Business Media(2008).
[18] L M CHEN, Y B DENG, T ZHOU et al. A novel electroosmotic micromixer with asymmetric lateral structures and DC electrode arrays. Micromachines, 8, 105(2017).