[1] ZHOU X Y, WANG T Y, LIU H, et al. Desulfurization through photocatalytic oxidation: A critical review[J]. ChemSusChem, 2021, 14(2): 492-511.
[2] LIU Wei, LIU Shuzhi, FU Haixi, et al. Petrochem Technol Appl, 2009, 27(1): 67-71.
[3] SUN S D, SONG P, CUI J, et al. Amorphous TiO2 nanostructures: Synthesis, fundamental properties and photocatalytic applications[J]. Catal Sci Technol, 2019, 9(16): 4198-4215.
[4] LI Y, SASAKI T, SHIMIZU Y, et al. Hexagonal-close-packed, hierarchical amorphous TiO2 nanocolumn arrays: Transferability, enhanced photocatalytic activity, and superamphiphilicity without UV irradiation[J]. J Am Chem Soc, 2008, 130(44): 14755-14762.
[5] XU Y F, WANG X D, LIAO J F, et al. Amorphous-TiO2-encapsulated CsPbBr3 nanocrystal composite photocatalyst with enhanced charge separation and CO2 fixation[J]. Adv Materials Inter, 2018, 5(22): 1.
[6] GHUMAN K K, SINGH C V. Effect of doping on electronic structure and photocatalytic behavior of amorphous TiO2[J]. J Phys Condens Matter, 2013, 25(47): 475501.
[7] CHUNG K H, KIM B J, PARK Y K, et al. Photocatalytic properties of amorphous N-doped TiO2 photocatalyst under visible light irradiation[J]. Catalysts, 2021, 11(8): 1010.
[8] ZHANG H, SUN S J, DING H, et al. Quantum dots TiO2 loaded amorphous SiO2 composite photocatalysts: Significant performance enhancement and the effect of SiO2 surface hydroxyl groups[J]. J Alloys Compounds, 2023: 170700.
[9] SUN Xiaojun, CAI Weimin, JING Liqiang, et al. J Harbin Inst Technol, 2001, 33(4): 534-541.
[10] YANG Zhiguang, WANG Jun, LI Yunlin, et al. New Chem Mater, 2015, 43(11): 218-220.
[11] YAN X L, HE J, EVANS D G, et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors[J]. Appl Catal B Environ, 2005, 55(4): 243-252.
[12] XU M Z, YANG L N, LI J. Photocatalytic oxidative desulfurization of dibenzothiophene on TiO2 modified bimodal mesoporous silica[J]. China Petrol Process Petrochem Technol, 2017, 19(3): 59-67.
[13] PHAM X N, NGUYEN M B, DOAN H V. Direct synthesis of highly ordered Ti-containing Al-SBA-15 mesostructured catalysts from natural halloysite and its photocatalytic activity for oxidative desulfurization of dibenzothiophene[J]. Adv Powder Technol, 2020, 31(8): 3351-3360.
[14] ZHU Rong, CHEN Hangrong, SHI Jianlin, et al. J Inorg Mater, 2003, 18(4): 855-860.
[15] KO?í K, TROPPOVá I, EDELMANNOVá M, et al. Photocatalytic decomposition of methanol over La/TiO2 materials[J]. Environ Sci Pollut Res Int, 2018, 25(35): 34818-34825.
[16] MEKSI M, TURKI A, KOCHKAR H, et al. The role of lanthanum in the enhancement of photocatalytic properties of TiO2 nanomaterials obtained by calcination of hydrogenotitanate nanotubes[J]. Appl Catal B Environ, 2016, 181: 651-660.
[17] ZHANG Q J, FU Y, WU Y F, et al. Lanthanum-doped TiO2 nanosheet film with highly reactive {001} facets and its enhanced photocatalytic activity[J]. Eur J Inorg Chem, 2016, 2016(11): 1706-1711.
[18] JIN M J, NAGAOKA Y, NISHI K, et al. Adsorption properties and photocatalytic activity of TiO2 and La-doped TiO2[J]. Adsorption, 2008, 14(2-3): 257-263.
[19] JING L Q, SUN X J, XIN B F, et al. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity[J]. J Solid State Chem, 2004, 177(10): 3375-3382.
[20] YANG Lina, ZHANG Xi, GUO Yongcheng, et al. J Chin Ceram Soc, 2021, 49(3): 528-536.
[21] PIREZ C, MORIN J C, MANAYIL J C, et al. Sol-gel synthesis of SBA-15: Impact of HCl on surface chemistry[J]. Microporous Mesoporous Mater, 2018, 271: 196-202.
[22] FLODSTR?M K, TEIXEIRA C V, AMENITSCH H, et al. In situ synchrotron small-angle X-ray scattering/X-ray diffraction study of the formation of SBA-15 mesoporous silica[J]. Langmuir, 2004, 20(12): 4885-4891.
[23] GRUNWALDT J D, KIENER C, W?GERBAUER C, et al. Preparation of supported gold catalysts for low-temperature CO oxidation via “size-controlled” gold colloids[J]. J Catal, 1999, 181(2): 223-232.
[24] WANG Yumei, JI Haiwei, CHANG Tong, et al. Chem Ind Eng Prog, 2020, 39(5): 1857-1865.
[25] ZAKI M I, HASAN M A, AL-SAGHEER F A, et al. In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: General considerations for the identification of acid sites on surfaces of finely divided metal oxides[J]. Colloids Surf A Physicochem Eng Aspects, 2001, 190(3): 261-274.
[26] CORSETTI S, ZEHENTBAUER F M, MCGLOIN D, et al. Characterization of gasoline/ethanol blends by infrared and excess infrared spectroscopy[J]. Fuel, 2015, 141: 136-142.
[27] ZHANG P, WANG L, YUAN L Y, et al. Sorption of Eu(III) on MXene-derived titanate structures: The effect of nano-confined space[J]. Chem Eng J, 2019, 370: 1200-1209.
[28] AGUIAR H, SERRA J, GONZáLEZ P, et al. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies[J]. J Non Cryst Solids, 2009, 355(8): 475-480.
[29] ZHAO Cen, LIU Dongmei, WEI Min, et al. Contemp Chem Ind, 2013, 42(2): 218-220.
[30] SOROLLA M G 2nd, DALIDA M L, KHEMTHONG P, et al. Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light[J]. J Environ Sci, 2012, 24(6): 1125-1132.
[31] PHAM X N, NGUYEN M B, NGO H S, et al. Highly efficient photocatalytic oxidative desulfurization of dibenzothiophene with sunlight irradiation using green catalyst of Ag@AgBr/Al-SBA-15 derived from natural halloysite[J]. J Ind Eng Chem, 2020, 90: 358-370.
[32] PHAM X N, NGUYEN B M, THI H T, et al. Synthesis of Ag-AgBr/Al-MCM-41 nanocomposite and its application in photocatalytic oxidative desulfurization of dibenzothiophene[J]. Adv Powder Technol, 2018, 29(8): 1827-1837.
[33] ZHANG Lulu, SUN Yue, WANG Zhe, et al. J Chin Ceram Soc, 2016, 44(1): 56-62.
[34] WANG Hao, KONG Liming, ZENG Yongping. J Fuel Chem Technol, 2023, 51(6): 832-840.