• Matter and Radiation at Extremes
  • Vol. 9, Issue 1, 014001 (2024)
Constantin Aniculaesei1, Thanh Ha1, Samuel Yoffe2, Lance Labun1,3..., Stephen Milton3, Edward McCary1, Michael M. Spinks1, Hernan J. Quevedo1, Ou Z. Labun1, Ritwik Sain1, Andrea Hannasch1, Rafal Zgadzaj1, Isabella Pagano1,4, Jose A. Franco-Altamirano1, Martin L. Ringuette1, Erhart Gaul1, Scott V. Luedtke5, Ganesh Tiwari6, Bernhard Ersfeld2, Enrico Brunetti2, Hartmut Ruhl7, Todd Ditmire1, Sandra Bruce1, Michael E. Donovan3, Michael C. Downer1, Dino A. Jaroszynski2 and Bjorn Manuel Hegelich1,3|Show fewer author(s)
Author Affiliations
  • 1University of Texas at Austin, Austin, Texas 78712, USA
  • 2SUPA Department of Physics, University of Strathclyde, Glasgow, Scotland G4 0NG, United Kingdom
  • 3Tau Systems, Inc., Austin, Texas 78701, USA
  • 4Lawrence Livermore National Laboratory, Livermore, California 94550, USA
  • 5Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
  • 6Brookhaven National Laboratory, Upton, New York 11973, USA
  • 7Ludwig-Maximilians-Universität, Munich, Germany
  • show less
    DOI: 10.1063/5.0161687 Cite this Article
    Constantin Aniculaesei, Thanh Ha, Samuel Yoffe, Lance Labun, Stephen Milton, Edward McCary, Michael M. Spinks, Hernan J. Quevedo, Ou Z. Labun, Ritwik Sain, Andrea Hannasch, Rafal Zgadzaj, Isabella Pagano, Jose A. Franco-Altamirano, Martin L. Ringuette, Erhart Gaul, Scott V. Luedtke, Ganesh Tiwari, Bernhard Ersfeld, Enrico Brunetti, Hartmut Ruhl, Todd Ditmire, Sandra Bruce, Michael E. Donovan, Michael C. Downer, Dino A. Jaroszynski, Bjorn Manuel Hegelich. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator[J]. Matter and Radiation at Extremes, 2024, 9(1): 014001 Copy Citation Text show less
    References

    [1] J. M.Dawson, T.Tajima. Laser electron accelerator. Phys. Rev. Lett., 43, 267-270(1979).

    [2] M. H.Key. The Physics of Laser Plasma Interactions, W. L. Kruer. Addison-Wesley, 1988, £33.95, 182 pages.. J. Plasma Phys., 45, 135(1991).

    [3] S.Gordienko, A.Pukhov. Bubble regime of wake field acceleration: Similarity theory and optimal scalings. Philos. Trans. R. Soc., A, 364, 623-633(2006).

    [4] C.Huang, T.Katsouleas, W.Lu, W. B.Mori, M.Zhou. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett., 96, 165002(2006).

    [5] F.Amiranoffet?al.. Observation of laser wakefield acceleration of electrons. Phys. Rev. Lett., 81, 995-998(1998).

    [6] S.-Y.Chen, A.Maksimchuk, D.Umstadter, R.Wagner. Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett., 78, 3125-3128(1997).

    [7] G.Mourou, D.Strickland. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219-221(1985).

    [8] P. F.Moulton. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B, 3, 125(1986).

    [9] P. N.Kean, W.Sibbett, D. E.Spence. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett., 16, 42-44(1991).

    [10] J.Faureet?al.. A laser-plasma accelerator producing monoenergetic electron beams. Nature, 431, 541-544(2004).

    [11] S. P. D.Mangleset?al.. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature, 431, 535-538(2004).

    [12] E.Brunettiet?al.. Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator. Phys. Rev. Lett., 105, 215007(2010).

    [13] L. T.Keet?al.. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma. Phys. Rev. Lett., 126, 214801(2021).

    [14] X.Wanget?al.. Petawatt-laser-driven wakefield acceleration of electrons to 2 GeV in 1017 cm−3 plasma. AIP Conf. Proc., 1507, 341-344(2012).

    [15] A. J.Gonsalveset?al.. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett., 122, 084801(2019).

    [16] H. T.Kimet?al.. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. Phys. Rev. Lett., 111, 165002(2013).

    [17] C.Joshi, W.Lu, K. A.Marsh, S. F.Martins, W. B.Mori, A.Pak. Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett., 104, 025003(2010).

    [18] K.Schmidet?al.. Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. Spec. Top.--Accel. Beams, 13, 091301(2010).

    [19] C.Rechatinet?al.. Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. Phys. Rev. Lett., 102, 164801(2009).

    [20] B.Shenet?al.. Electron injection by a nanowire in the bubble regime. Phys. Plasmas, 14, 053115(2007).

    [21] M. H.Cho, H. T.Kim, C. H.Nam, V. B.Pathak. Controlled electron injection facilitated by nanoparticles for laser wakefield acceleration. Sci. Rep., 8, 16924(2018).

    [22] C.Aniculaeseiet?al.. Proof-of-principle experiment for nanoparticle-assisted laser wakefield electron acceleration. Phys. Rev. Appl., 12, 044041(2019).

    [23] D. B.Kittelson, P.Liu, P. H.McMurry, P. J.Ziemann. Generating particle beams of controlled dimensions and divergence: II. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol., 22, 314-324(1995).

    [24] E. W.Gaulet?al.. Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier. Appl. Opt., 49, 1676-1681(2010).

    [25] E.Gaulet?al.. Improved pulse contrast on the Texas petawatt laser. J. Phys.: Conf. Ser., 717, 012092(2016).

    [26] G.Tiwariet?al.. Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 1022 W/cm2. Opt. Lett., 44, 2764(2019).

    [27] C.Aniculaesei, B. M.Hegelich. Particle-assisted wakefield electron acceleration devices. U.S. patent application, 223(2022).

    [28] C.Aniculaesei, H. T.Kim, C. H.Nam, K. H.Oh, B. J.Yoo. Novel gas target for laser wakefield accelerators. Rev. Sci. Instrum., 89, 025110(2018).

    [29] H.Higashi, M.Kim, T.Kim, S.Osone, T.Seto. Synthesis of nanoparticles by laser ablation: A review. KONA Powder Part. J., 34, 80-90(2017).

    [30] K. H.Leitz, A.Otto, B.Redlingsh?fer, Y.Reg, M.Schmidt. Metal ablation with short and ultrashort laser pulses. Phys. Procedia, 12, 230-238(2011).

    [31] B. B.Pollocket?al.. Two-screen method for determining electron beam energy and deflection from laser wakefield. Proceedings of PAC09, 3035-3037(2009).

    [32] C.Aniculaesei, C. I.Hojbota, H. T.Kim, C. H.Nam, B. S.Rao, J. H.Shin. Accurate single-shot measurement technique for the spectral distribution of GeV electron beams from a laser wakefield accelerator. AIP Adv., 9, 085229(2019).

    [33] D. M.Kaplan, T. J.Roberts. G4beamline simulation program for matter-dominated beamlines, 3468-3470(2007).

    [34] A.Bucket?al.. Absolute charge calibration of scintillating screens for relativistic electron detection. Rev. Sci. Instrum., 81, 033301(2010).

    [35] K.Zeilet?al.. Absolute response of Fuji imaging plate detectors to picosecond-electron bunches. Rev. Sci. Instrum., 81, 013307(2010).

    [36] J. P.Schwinkendorfet?al.. Charge calibration of DRZ scintillation phosphor screens. J. Instrum., 14, P09025(2019).

    [37] Y.Glinecet?al.. Absolute calibration for a broad range single shot electron spectrometer. Rev. Sci. Instrum., 77, 103301(2006).

    [38] X.Wanget?al.. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun., 4, 1988(2013).

    [39] C.Ciocarlanet?al.. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications. Phys. Plasmas, 20, 093108(2013).

    [40] K.Huang, M.Kando, H.Kiriyama, K.Kondo, N.Nakanii. Precise pointing control of high-energy electron beam from laser wakefield acceleration using an aperture. Appl. Phys. Express, 16, 026001(2023).

    [41] M. F.Gilljohannet?al.. Direct observation of plasma waves and dynamics induced by laser-accelerated electron beams. Phys. Rev. X, 9, 011046(2019).

    [42] Y.Wanet?al.. Direct observation of relativistic broken plasma waves. Nat. Phys., 18, 1186-1190(2022).

    [43] C.Aniculaeseiet?al.. Proof-of-principle experiment for nanoparticle-assisted laser wakefield electron acceleration. Phys. Rev. Appl., 12, 044041(2019).

    [44] X.Wanget?al.. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun., 4, 1988(2013).

    Constantin Aniculaesei, Thanh Ha, Samuel Yoffe, Lance Labun, Stephen Milton, Edward McCary, Michael M. Spinks, Hernan J. Quevedo, Ou Z. Labun, Ritwik Sain, Andrea Hannasch, Rafal Zgadzaj, Isabella Pagano, Jose A. Franco-Altamirano, Martin L. Ringuette, Erhart Gaul, Scott V. Luedtke, Ganesh Tiwari, Bernhard Ersfeld, Enrico Brunetti, Hartmut Ruhl, Todd Ditmire, Sandra Bruce, Michael E. Donovan, Michael C. Downer, Dino A. Jaroszynski, Bjorn Manuel Hegelich. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator[J]. Matter and Radiation at Extremes, 2024, 9(1): 014001
    Download Citation