[1] W. Zhang, P. Sayavong, X. Xiao, S.T. Oyakhire, S.B. Shuchi et al., Recovery of isolated lithium through discharged state calendar ageing. Nature 626, 306–312 (2024).
[2] Z. Wang, Z. Du, L. Wang, G. He, I.P. Parkin et al., Disordered materials for high-performance lithium-ion batteries: a review. Nano Energy 121, 109250 (2024).
[3] Z. Ning, G. Li, D.L.R. Melvin, Y. Chen, J. Bu et al., Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023).
[4] H. Du, Y. Kang, C. Li, Y. Zhao, J. Wozny et al., Easily recyclable lithium-ion batteries: recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder. Battery Energy 2, 20230011 (2023).
[5] J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023).
[6] M. Dubarry, N. Costa, D. Matthews, Data-driven direct diagnosis of Li-ion batteries connected to photovoltaics. Nat. Commun. 14, 3138 (2023).
[7] J. Bae, S. Oh, B. Lee, C.H. Lee, J. Chung et al., High-performance, printable quasi-solid-state electrolytes toward all 3D direct ink writing of shape-versatile Li-ion batteries. Energy Storage Mater. 57, 277–288 (2023).
[8] H. Li, A. Berbille, X. Zhao, Z. Wang, W. Tang et al., A contact-electro-catalytic cathode recycling method for spent lithium–ion batteries. Nat. Energy 8, 1137–1144 (2023).
[9] S. Lei, Z. Zeng, S. Cheng, J. Xie, Fast-charging of lithium-ion batteries: a review of electrolyte design aspects. Battery Energy 2, 20230018 (2023).
[10] H. Zhang, L. Wang, X. He, Trends in a study on thermal runaway mechanism of lithium-ion battery with LiNixMnyCo1-x-yO2 cathode materials. Battery Energy 1, 20210011 (2022).
[11] X. Wang, Q. Zhang, C. Zhao, H. Li, B. Zhang et al., Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox. Nat. Energy 9, 184–196 (2024).
[12] Y. Shi, F. Geng, Y. Sun, P. Jiang, W.H. Kan et al., Sustainable anionic redox by inhibiting Li cross-layer migration in Na-based layered oxide cathodes. ACS Nano 18, 5609–5621 (2024).
[13] S. Kim, M. Lee, C. Park, A. Park, S. Kwon et al., Molecular dynamics study on lithium-ion transport in PEO branched nanopores with PYR14TFSI ionic liquid. Battery Energy 1, 20210013 (2022).
[14] Y. Wei, S. Zhang, D. Zhai, F. Kang, Escape of lattice water in potassium iron hexacyanoferrate for cyclic optimization in potassium-ion batteries. Battery Energy 2, 20220027 (2023).
[15] D. Schäfer, K. Hankins, M. Allion, U. Krewer, F. Karcher et al., Multiscale investigation of sodium-ion battery anodes: analytical techniques and applications. Adv. Energy Mater. 14, 2302830 (2024).
[16] J. Liu, Y. Wang, N. Jiang, B. Wen, C. Yang et al., Vacancies-regulated Prussian blue analogues through precipitation conversion for cathodes in sodium-ion batteries with energy densities over 500 Wh/kg. Angew. Chem. Int. Ed. e202400214 (2024).
[17] D. Zhang, H. Xu Nickel modified TiO2/C nanodisks with defective and near-amorphous structure for high-performance sodium-ion batteries. Battery Energy 3, 20230032 (2024).
[18] J. Ge, L. Fan, A.M. Rao, J. Zhou, B. Lu, Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 5, 225–234 (2022).
[19] Y. Gao, W. Li, B. Ou, S. Zhang, H. Wang et al., A dilute fluorinated phosphate electrolyte enables 4.9V-class potassium ion full batteries. Adv. Funct. Mater. 33, 2305829 (2023).
[20] Q. Yao, F. Xiao, C. Lin, P. Xiong, W. Lai et al., Regeneration of spent lithium manganate into cation-doped and oxygen-deficient MnO2 cathodes towardultralong lifespan and wide-temperature-tolerant aqueous Zn-ion batteries. Battery Energy 2, 20220065 (2023).
[21] Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15, 205 (2023).
[22] M. Li, M. Liu, Y. Lu, G. Zhang, Y. Zhang et al., A dual active site organic–inorganic poly(O-phenylenediamine)/NH4V3O8 composite cathode material for aqueous zinc-ion batteries. Adv. Funct. Mater. 34, 2312789 (2024).
[23] X. Lan, S. Yang, T. Meng, C. Zhang, X. Hu, A multifunctional electrolyte additive with solvation structure regulation and electrode/electrolyte interface manipulation enabling high-performance Li-ion batteries in wide temperature range. Adv. Energy Mater. 13, 2203449 (2023).
[24] Z. Li, J. Häcker, M. Fichtner, Z. Zhao-Karger, Cathode materials and chemistries for magnesium batteries: challenges and opportunities. Adv. Energy Mater. 13, 2300682 (2023).
[25] X. Qin, X. Zhao, G. Zhang, Z. Wei, L. Li et al., Highly reversible intercalation of calcium ions in layered vanadium compounds enabled by acetonitrile-water hybrid electrolyte. ACS Nano 17, 12040–12051 (2023).
[26] X. Hao, L. Zheng, S. Hu, Y. Wu, G. Zhang et al., Stabilizing Ca-ion batteries with a 7000-cycle lifespan and superior rate capability by a superlattice-like vanadium heterostructure. Mater. Today Energy 38, 101456 (2023).
[27] G. Studer, A. Schmidt, J. Büttner, M. Schmidt, A. Fischer et al., On a high-capacity aluminium battery with a two-electron phenothiazine redox polymer as a positive electrode. Energy Environ. Sci. 16, 3760–3769 (2023).
[28] Y.-N. Liu, J.-L. Yang, Z.-Y. Gu, X.-Y. Zhang, Y. Liu et al., Entropy-regulated cathode with low strain and constraint phase-change toward ultralong-life aqueous Al–ion batteries. Angew. Chem. Int. Ed. 63, e202316925 (2024).
[29] Q. Sun, L. Chai, S. Chen, W. Zhang, H.Y. Yang et al., Dual-salt mixed electrolyte for high performance aqueous aluminum batteries. ACS Appl. Mater. Interfaces 16, 10061–10069 (2024).
[30] X. Liu, H. Wu, Z. Xuan, L. Li, Y. Fang et al., Stable organic polymer anode for high rate and fast charge sodium based dual-ion battery. Chemsuschem 17, e202301223 (2024).
[31] W. Luo, D. Yu, T. Ge, J. Yang, S. Dong et al., Balancing salt concentration and fluorinated cosolvent for graphite cathode-based dual-ion batteries. Appl. Energy 358, 122652 (2024).
[32] R. Yang, W. Yao, L. Zhou, F. Zhang, Y. Zheng et al., Secondary amines functionalized organocatalytic iodine redox for high-performance aqueous dual-ion batteries. Adv. Mater. 36, e2314247 (2024).
[33] S. Guan, J. Zhou, S. Sun, Q. Peng, X. Guo et al., Nonmetallic Se/N Co-doped amorphous carbon anode collaborates to realize ultra-high capacity and fast potassium storage for potassium dual-ion batteries. Adv. Funct. Mater. 34, 2314890 (2024).
[34] J. Ding, Y. Huang, W. Cheng, R. Sheng, Z. Liu et al., Boosting ion diffusion kinetics of Fe2O3/MoC@NG via heterointerface engineering and pseudocapacitance behavior: an alternative high-rate anode for high-capacity lithium dual-ion batteries. Chem. Eng. J. 481, 148499 (2024).
[35] Y. Li, B. Wang, High rate and ultralong cyclelife fiber-shaped sodium dual-ion battery based on bismuth anodes and polytriphenylamine cathodes. Battery Energy 2, 20220035 (2023).
[36] Y. Song, Y. Wu, Y. Wang, Y. Jia, H. Gou et al., “Graphene bubble bridging” enabled flexible multifunctional carbon fiber membrane toward K+ storage devices. Adv. Funct. Mater. 34, 2311458 (2024).
[37] H.D. Asfaw, A. Kotronia, A polymeric cathode-electrolyte interface enhances the performance of MoS2-graphite potassium dual-ion intercalation battery. Cell Rep. Phys. Sci. 3, 100693 (2022).
[38] H.D. Asfaw, A. Kotronia, N. Garcia-Araez, K. Edström, D. Brandell, Charting the course to solid-state dual-ion batteries. Carbon Energy 6, e425 (2024).
[39] F. Zhang, B. Ji, X. Tong, M. Sheng, X. Zhang et al., A dual-ion battery constructed with aluminum foil anode and mesocarbon microbead cathode via an alloying/intercalation process in an ionic liquid electrolyte. Adv. Mater. Interfaces 3, 1600605 (2016).
[40] B. Pattavathi, V. Surendran, S. Palani, M.M. Shaijumon, Artificial neural network-enabled approaches toward mass balancing and cell optimization of lithium dual ion batteries. J. Energy Storage 68, 107878 (2023).
[41] H. Liu, J. Zhang, L. Zhang, G. Xu, H. Wang, Anion intercalation into graphite electrode from ethylene carbonate solutions dissolving both lithium hexafluorophosphate and lithium bis(trifluoromethanesulfonyl)imide J. Phys. Chem. C 128, 1574–1581 (2024).
[42] M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8, 1703320 (2018).
[43] T. Placke, A. Heckmann, R. Schmuch, P. Meister, K. Beltrop et al., Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 2528–2550 (2018).
[44] X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji et al., Strategies towards low-cost dual-ion batteries with high performance. Angew. Chem. Int. Ed. 59, 3802–3832 (2020).
[45] L. Zhang, H. Wang, X. Zhang, Y. Tang, A review of emerging dual-ion batteries: fundamentals and recent advances. Adv. Funct. Mater. 31, 2010958 (2021).
[46] J. Hao, X. Li, X. Song, Z. Guo, Recent progress and perspectives on dual-ion batteries. EnergyChem 1, 100004 (2019).
[47] H.-G. Wang, Y. Wang, Q. Wu, G. Zhu, Recent developments in electrode materials for dual-ion batteries: Potential alternatives to conventional batteries. Mater. Today 52, 269–298 (2022).
[48] W. Rüdorff, U. Hofmann, Über graphitsalze. Z. Anorg. Allg. Chem. 238, 1–50 (1938).
[49] F.P. Mccullough, A.F. Beale, Secondary electrical energy storage device and electrode therefor. US04865931A. 1989.
[50] R.T. Carlin, H.C. De Long, J. Fuller, P.C. Trulove, Dual intercalating molten electrolyte batteries. J. Electrochem. Soc. 141, L73–L76 (1994).
[51] J.A. Seel, J.R. Dahn, Electrochemical intercalation of PF6 into graphite. J. Electrochem. Soc. 147, 892 (2000).
[52] T. Ishihara, M. Koga, H. Matsumoto, M. Yoshio, Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery. Electrochem. Solid-State Lett. 10, A74 (2007).
[53] T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel et al., Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-Ion cells. J. Electrochem. Soc. 159, A1755–A1765 (2012).
[54] S. Rothermel, P. Meister, G. Schmuelling, O. Fromm, H.-W. Meyer et al., Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte. Energy Environ. Sci. 7, 3412–3423 (2014).
[55] M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 325–328 (2015).
[56] X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016).
[57] M. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv. Energy Mater. 7, 1601963 (2017).
[58] B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29, 1700519 (2017).
[59] M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang et al., Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018).
[60] X. Wu, Y. Xu, C. Zhang, D.P. Leonard, A. Markir et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019).
[61] X. Lei, Y. Zheng, F. Zhang, Y. Wang, Y. Tang, Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material. Energy Storage Mater. 30, 34–41 (2020).
[62] X. Tong, X. Ou, N. Wu, H. Wang, J. Li et al., High oxidation potential ≈6.0V of concentrated electrolyte toward high-performance dual-ion battery. Adv. Energy Mater. 11, 2100151 (2021).
[63] H. Wu, S. Luo, L. Li, H. Xiao, W. Yuan, A high-capacity dual-ion full battery based on nitrogen-doped carbon nanosphere anode and concentrated electrolyte. Battery Energy 2, 20230009 (2023).
[64] B. Wang, Y. Huang, Y. Wang, H. Wang, Synergistic solvation of anion: an effective strategy toward economical high-performance dual-ion battery. Adv. Funct. Mater. 33, 2212287 (2023).
[65] L. Che, Z. Hu, T. Zhang, P. Dai, C. Chen et al., Regulating the interfacial chemistry of graphite in ethyl acetate-based electrolyte for low-temperature Li-ion batteries. Battery Energy 3, 20230064 (2024).
[66] Y. Huang, J. Li, H. Wang, Abnormal inverse current during anion deintercalation from graphite electrode. ACS Appl. Energy Mater. 2, 4544–4550 (2019).
[67] J. Kang, S. Lee, J. Hwang, S. Kim, S. Lee et al., Azacyclic anchor-enabled cohesive graphite electrodes for sustainable anion storage. Adv. Mater. 35, 2306157 (2023).
[68] S. Zhao, Y. Huang, Y. Wang, D. Zhu, L. Zhang et al., Intercalation behavior of tetrafluoroborate anion in a graphite electrode from mixed cyclic carbonates. ACS Appl. Energy Mater. 4, 737–744 (2021).
[69] I.A. Rodríguez-Pérez, X. Ji, Anion hosting cathodes in dual-ion batteries. ACS Energy Lett. 2, 1762–1770 (2017).
[70] R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. Oxf. 36, 638–670 (2011).
[71] S. Kumar, P. Bhauriyal, B. Pathak, Computational insights into the working mechanism of the LiPF6–graphite dual-ion battery. J. Phys. Chem. C 123, 23863–23871 (2019).
[72] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
[73] S. Ji, A. Zhang, W. Hua, S. Yan, X. Chen, Regeneration of graphite from spent lithium-ion batteries as anode materials through stepwise purification and mild temperature restoration. Battery Energy 3, 20230067 (2024).
[74] C. Sole, N.E. Drewett, L.J. Hardwick, In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss. 172, 223–237 (2014).
[75] G. Wang, F. Wang, P. Zhang, J. Zhang, T. Zhang et al., Polarity-switchable symmetric graphite batteries with high energy and high power densities. Adv. Mater. 30, e1802949 (2018).
[76] J.A. Read, A.V. Cresce, M.H. Ervin, K. Xu, Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ. Sci. 7, 617–620 (2014).
[77] L. Fan, Q. Liu, S. Chen, Z. Xu, B. Lu, Soft carbon as anode for high-performance sodium-based dual ion full battery. Adv. Energy Mater. 7, 1602778 (2017).
[78] K. Li, G. Ma, D. Yu, W. Luo, J. Li et al., A high-concentrated and nonflammable electrolyte for potassium ion-based dual-graphite batteries. Nano Res. 16, 6353–6360 (2023).
[79] X. Li, X. Ou, Y. Tang, 6.0 V High-voltage and concentrated electrolyte toward high energy density K-based dual-graphite battery. Adv. Energy Mater. 10, 2002567 (2020).
[80] J. Fan, Z. Zhang, Y. Liu, A. Wang, L. Li et al., An excellent rechargeable PP14TFSI ionic liquid dual-ion battery. Chem. Commun. 53, 6891–6894 (2017).
[81] A. Wang, W. Yuan, J. Fan, L. Li, A dual-graphite battery with pure 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide as the electrolyte. Energy Technol. 6, 2172–2178 (2018).
[82] D.S. Kim, J.U. Lee, S.H. Kim, J.-Y. Hong, Electrochemically exfoliated graphite as a highly efficient conductive additive for an anode in lithium-ion batteries. Battery Energy 2, 20230012 (2023).
[83] X.M. Nguyen Thi, K.M. Le, Q. Phung, D.Q. Truong, H. Van Nguyen et al., Improving the electrochemical performance of lithium-ion battery using silica/carbon anode through prelithiation techniques. Battery Energy 2, 20230003 (2023).
[84] Y. Wang, Y. Zhang, S. Wang, S. Dong, C. Dang et al., Ultrafast charging and stable cycling dual-ion batteries enabled via an artificial cathode–electrolyte interface. Adv. Funct. Mater. 31, 2102360 (2021).
[85] X. Han, G. Xu, Z. Zhang, X. Du, P. Han et al., An in situ interface reinforcement strategy achieving long cycle performance of dual-ion batteries. Adv. Energy Mater. 9, 1804022 (2019).
[86] X. Hu, Y. Ma, W. Qu, J. Qian, Y. Li et al., Large interlayer distance and heteroatom-doping of graphite provide new insights into the dual-ion storage mechanism in dual-carbon batteries. Angew. Chem. Int. Ed. 62, e202307083 (2023).
[87] Y. Chu, J. Zhang, Y. Zhang, Q. Li, Y. Jia et al., Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 35, e2212186 (2023).
[88] T. Ke, S. Yun, K. Wang, T. Xing, J. Dang et al., Constructing bimetal, alloy, and compound-modified nitrogen-doped biomass-derived carbon from coconut shell as accelerants for boosting methane production in bioenergy system. Energy Mater. 4, 400011 (2024).
[89] L.-F. Zhao, Z. Hu, W.-H. Lai, Y. Tao, J. Peng et al., Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 11, 2002704 (2021).
[90] A. Nagmani, S. Kumar, Puravankara, Optimizing ultramicroporous hard carbon spheres in carbonate ester-based electrolytes for enhanced sodium storage in half-/ full-cell sodium-ion batteries. Battery Energy 1, 20220007 (2022).
[91] C. Ma, L. Tang, H. Cheng, Z. Li, W. Li et al., Biochar for supercapacitor electrodes: Mechanisms in aqueous electrolytes. Battery Energy 3, 20230058 (2024).
[92] Z. Guo, Z. Xu, F. Xie, J. Jiang, K. Zheng et al., Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteries. Adv. Mater. 35, e2304091 (2023).
[93] G. Wang, J. Gao, W. Wang, Z. Tao, X. He et al., Evoking surface-driven capacitive process through sulfur implantation into nitrogen-coordinated hard carbon hollow spheres achieves superior alkali metal ion storage beyond lithium. Battery Energy 2, 20230031 (2023).
[94] Y. Chen, H. Sun, J. Guo, Y. Zhao, H. Yang et al., Research on carbon-based and metal-based negative electrode materials via DFT calculation for high potassium storage performance: a review. Energy Mater. 3, 300044 (2023).
[95] R. Xu, N. Sun, H. Zhou, X. Chang, R.A. Soomro et al., Hard carbon anodes derived from phenolic resin/sucrose cross-linking network for high-performance sodium-ion batteries. Battery Energy 2, 20220054 (2023).
[96] Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6, 1501874 (2016).
[97] N. LeGe, X.-X. He, Y.-X. Wang, Y. Lei, Y.-X. Yang et al., Reappraisal of hard carbon anodes for practical lithium/sodium-ion batteries from the perspective of full-cell matters. Energy Environ. Sci. 16, 5688–5720 (2023).
[98] X. Chen, C. Liu, Y. Fang, X. Ai, F. Zhong et al., Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy 4, 1133–1150 (2022).
[99] Z.-L. Yu, S. Xin, Y. You, L. Yu, Y. Lin et al., Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J. Am. Chem. Soc. 138, 14915–14922 (2016).
[100] S. Chen, J. Wang, L. Fan, R. Ma, E. Zhang et al., An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv. Energy Mater. 8, 1800140 (2018).
[101] X. Wang, C. Zheng, L. Qi, H. Wang, Carbon derived from pine needles as a Na+-storage electrode material in dual-ion batteries. Glob. Chall. 1, 1700055 (2017).
[102] S. Chen, Q. Kuang, H.J. Fan, Dual-carbon batteries: materials and mechanism. Small 16, e2002803 (2020).
[103] H. Kim, J.C. Hyun, D.H. Kim, J.H. Kwak, J.B. Lee et al., Revisiting lithium- and sodium-ion storage in hard carbon anodes. Adv. Mater. 35, e2209128 (2023).
[104] J. Wang, L. Xi, C. Peng, X. Song, X. Wan et al., Recent progress in hard carbon anodes for sodium-ion batteries. Adv. Eng. Mater. 26, 2302063 (2024).
[105] C. Zheng, B. Jian, X. Xu, J. Zhong, H. Yang et al., Regulating microstructure of walnut shell-derived hard carbon for high rate and long cycling sodium-based dual-ion batteries. Chem. Eng. J. 455, 140434 (2023).
[106] X. Jiang, X. Liu, Z. Zeng, L. Xiao, X. Ai et al., A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life. Adv. Energy Mater. 8, 1802176 (2018).
[107] C. Chen, M. Wu, Y. Wang, K. Zaghib, Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. J. Power. Sources 444, 227310 (2019).
[108] K. Zhang, Q. He, F. Xiong, J. Zhou, Y. Zhao et al., Active sites enriched hard carbon porous nanobelts for stable and high-capacity potassium-ion storage. Nano Energy 77, 105018 (2020).
[109] R. Hou, B. Liu, Y. Sun, L. Liu, J. Meng et al., Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy 72, 104728 (2020).
[110] A. Phukhrongthung, M. Sawangphruk, P. Iamprasertkun, C. Santhaweesuk, C. Puchongkawarin et al., Rocking chair-type aqueous sodium-ion capacitors with biomass-derived activated carbon and Na3V2(PO4)2F3 nanoflower in a water-in-salt electrolyte. J. Energy Storage 80, 110369 (2024).
[111] L. Wang, M. Peng, J. Chen, X. Tang, L. Li et al., High energy and power zinc ion capacitors: a dual-ion adsorption and reversible chemical adsorption coupling mechanism. ACS Nano 16, 2877–2888 (2022).
[112] G.G. Bizuneh, A.M.M. Adam, J. Ma Progress on carbon for electrochemical capacitors. Battery Energy 2, 20220021 (2023).
[113] H. Li, T. Kurihara, D. Yang, M. Watanabe, T. Ishihara, A novel aqueous dual-ion battery using concentrated bisalt electrolyte. Energy Storage Mater. 38, 454–461 (2021).
[114] H. Wang, D. Mitlin, J. Ding, Z. Li, K. Cui, Excellent energy–power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J. Mater. Chem. A 4, 5149–5158 (2016).
[115] Q. Wang, S. Wang, W. Liu, D. Wang, S. Luo et al., N-doped hollow carbon spheres as a high-performance anode for potassium-based dual-ion battery. J. Energy Storage 54, 105285 (2022).
[116] P. Meister, V. Küpers, M. Kolek, J. Kasnatscheew, S. Pohlmann et al., Enabling Mg-based ionic liquid electrolytes for hybrid dual-ion capacitors. Batter. Supercaps 4, 504–512 (2021).
[117] H. Yang, X. Shi, T. Deng, T. Qin, L. Sui et al., Carbon-based dual-ion battery with enhanced capacity and cycling stability. ChemElectroChem 5, 3612–3618 (2018).
[118] F. Sun, X. Liu, H.B. Wu, L. Wang, J. Gao et al., In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett. 18, 3368–3376 (2018).
[119] X. Wang, M. Hou, Z. Shi, X. Liu, I. Mizota et al., Regulate phosphorus configuration in high P-doped hard carbon as a superanode for sodium storage. ACS Appl. Mater. Interfaces 13, 12059–12068 (2021).
[120] M. Wang, Q. Liu, G. Wu, J. Ma, Y. Tang, Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life. Green Energy Environ. 8, 548–558 (2023).
[121] K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang et al., Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem. Int. Ed. 60, 6326–6332 (2021).
[122] S. Trano, D. Versaci, M. Castellino, M. Fontana, L. Fagiolari et al., Exploring nature-behaviour relationship of carbon black materials for potassium-ion battery electrodes. Energy Mater. 4, 400008 (2024).
[123] X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 14, 2036–2089 (2021).
[124] H. Wang, Y. Shao, S. Mei, Y. Lu, M. Zhang et al., Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 120, 9363–9419 (2020).
[125] Y. Hou, H. Sun, F. Kong, M. Wang, L. Li et al., Direct synthesis of N, S Co-doped graphynes via copolymerization strategy for electrocatalytic application. Battery Energy 3, 20230026 (2024).
[126] D. Qu, B. Zhao, Z. Song, D. Wang, H. Kong et al., Two-dimensional N/O Co-doped porous turbostratic carbon nanomeshes with expanded interlayer spacing as host material for potassium/lithium half/full batteries. J. Mater. Chem. A 9, 25094–25103 (2021).
[127] Y. Sun, Y.-L. Yang, X.-L. Shi, L. Ye, Y. Hou et al., An ultra-stable sodium half/full battery based on a unique micro-channel pine-derived carbon/SnS2@reduced graphene oxide film. Battery Energy 2, 20220046 (2023).
[128] Y. Guo, C. Liu, L. Xu, K. Huang, H. Wu et al., A cigarette filter-derived nitrogen-doped carbon nanoparticle coating layer for stable Zn-ion battery anodes. Energy Mater. 2, 200032 (2022).
[129] L. Zhao, S. Sun, J. Lin, L. Zhong, L. Chen et al., Defect engineering of disordered carbon anodes with ultra-high heteroatom doping through a supermolecule-mediated strategy for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 41 (2023).
[130] H. Tan, X. Du, R. Zhou, Z. Hou, B. Zhang, Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries. Carbon 176, 383–389 (2021).
[131] S. Huang, D. Yang, X. Qiu, W. Zhang, Y. Qin et al., Boosting surface-dominated sodium storage of carbon anode enabled by coupling graphene nanodomains, nitrogen-doping, and nanoarchitecture engineering. Adv. Funct. Mater. 32, 2203279 (2022).
[132] W. Jian, W. Zhang, B. Wu, X. Wei, W. Liang et al., Enzymatic hydrolysis lignin-derived porous carbons through ammonia activation: activation mechanism and charge storage mechanism. ACS Appl. Mater. Interfaces 14, 5425–5438 (2022).
[133] G. Qiu, M. Ning, M. Zhang, J. Hu, Z. Duan et al., Flexible hard−soft carbon heterostructure based on mesopore confined carbonization for ultrafast and highly durable sodium storage. Carbon 205, 310–320 (2023).
[134] X. Cheng, H. Yang, C. Wei, F. Huang, Y. Yao et al., Synergistic effect of 1D bismuth Nanowires/2D graphene composites for high performance flexible anodes in sodium-ion batteries. J. Mater. Chem. A 11, 8081–8090 (2023).
[135] R. Zhao, N. Sun, B. Xu, Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries. Small Struct. 2, 2100132 (2021).
[136] Q. Shen, P. Jiang, H. He, Y. Feng, Y. Cai et al., Designing g-C3N4/N-rich carbon fiber composites for high-performance potassium-ion hybrid capacitors. Energy Environ. Mater. 4, 638–645 (2021).
[137] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart et al., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004).
[138] Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921–6939 (2014).
[139] R. Guo, L. Li, B. Wang, Y. Xiang, G. Zou et al., Functionalized carbon dots for advanced batteries. Energy Storage Mater. 37, 8–39 (2021).
[140] M. Shaker, T. Shahalizade, A. Mumtaz, M. Hemmati Saznaghi, S. Javanmardi et al., A review on the role of graphene quantum dots and carbon quantum dots in secondary-ion battery electrodes. FlatChem 40, 100516 (2023).
[141] F. Wang, Z. Liu, P. Zhang, H. Li, W. Sheng et al., Dual-graphene rechargeable sodium battery. Small 13, (2017).
[142] M. Peng, K. Shin, L. Jiang, Y. Jin, K. Zeng et al., Alloy-type anodes for high-performance rechargeable batteries. Angew. Chem. Int. Ed. 61, e202206770 (2022).
[143] Li, G.; Guo S.; Xiang B.; Mei S.; Zheng Y et al., Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries. Energy Mater. 2, 200020 (2022).
[144] T. Wulandari, D. Fawcett, S.B. Majumder, G.E.J. Poinern, Lithium-based batteries, history, current status, challenges, and future perspectives. Battery Energy 2, 20230030 (2023).
[145] X. Ou, D. Gong, C. Han, Z. Liu, Y. Tang, Advances and prospects of dual-ion batteries. Adv. Energy Mater. 11, 2102498 (2021).
[146] D. Gong, C. Wei, Z. Liang, Y. Tang, Recent advances on sodium-ion batteries and sodium dual-ion batteries: state-of-the-art Na+ host anode materials. Small Sci. 1, 2100014 (2021).
[147] W. Liu, Y. Li, H. Yang, B. Long, Y. Li et al., Pursuing high voltage and long lifespan for low-cost Al-based rechargeable batteries: Dual-ion design and prospects. Energy Storage Mater. 62, 102922 (2023).
[148] L. Xiang, X. Ou, X. Wang, Z. Zhou, X. Li et al., Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery. Angew. Chem. Int. Ed. 59, 17924–17930 (2020).
[149] K.V. Kravchyk, M.V. Kovalenko, On achievable gravimetric and volumetric energy densities of Al dual-ion batteries. ACS Energy Lett. 8, 1266–1269 (2023).
[150] Y.H. Heo, J. Lee, S. Ha, J.C. Hyun, D.H. Kang et al., 3D-structured bifunctional MXene paper electrodes for protection and activation of Al metal anodes. J. Mater. Chem. A 11, 14380–14389 (2023).
[151] C. Han, G. Chen, Y. Ma, J. Ma, X. Shui et al., Strategies towards inhibition of aluminum current collector corrosion in lithium batteries. Energy Mater. 3, 300052 (2023).
[152] X. Tong, F. Zhang, G. Chen, X. Liu, L. Gu et al., Core–shell Aluminum@Carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates. Adv. Energy Mater. 8, 1701967 (2018).
[153] X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang, Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv. Mater. 28, 9979–9985 (2016).
[154] S. Peng, X. Zhou, S. Tunmee, Z. Li, P. Kidkhunthod. Amorphous carbon nano- interface-modified aluminum anodes for high-performance dual-ion batteries. ACS Sustain Chem. Eng. 9, 3710-3717 (2021).
[155] B. Sun, D. Xu, Z. Wang, Y. Zhan, K. Zhang, Interfacial structure design for triboelectric nanogenerators. Battery Energy 1, 20220001 (2022).
[156] T. Tao, Z. Zheng, Y. Gao, B. Yu, Y. Fan et al., Understanding the role of interfaces in solid-state lithium-sulfur batteries. Energy Mater. 2, 35 (2022).
[157] H. Zhang, D. Xu, F. Yang, J. Xie, Q. Liu et al., A high-capacity Sn metal anode for aqueous acidic batteries. Joule 7, 971–985 (2023).
[158] X. Wu, X. Lan, R. Hu, Y. Yao, Y. Yu et al., Tin-based anode materials for stable sodium storage: progress and perspective. Adv. Mater. 34, e2106895 (2022).
[159] A. Amardeep, D.J. Freschi, J. Wang, J. Liu, Fundamentals, preparation, and mechanism understanding of Li/Na/Mg-Sn alloy anodes for liquid and solid-state lithium batteries and beyond. Nano Res. 16, 8191–8218 (2023).
[160] A.B. Ikhe, J.Y. Seo, W.B. Park, J.-W. Lee, K.-S. Sohn et al., 3-V class Mg-based dual-ion battery with astonishingly high energy/power densities in common electrolytes. J. Power. Sources 506, 230261 (2021).
[161] C. Jiang, X. Meng, Y. Zheng, J. Yan, Z. Zhou et al., High-performance potassium-ion-based full battery enabled by an ionic-drill strategy. CCS Chem. 3, 85–94 (2021).
[162] M. Zhang, J. Zhong, W. Kong, L. Wang, T. Wang et al., A high capacity and working voltage potassium-based dual ion batteries. Energy Environ. Mater. 4, 413–420 (2021).
[163] J. Zhou, Y. Zhou, X. Zhang, L. Cheng, M. Qian et al., Germanium-based high-performance dual-ion batteries. Nanoscale 12, 79–84 (2020).
[164] G. Liu, X. Liu, X. Ma, X. Tang, X. Zhang et al., High-performance dual-ion battery based on silicon-graphene composite anode and expanded graphite cathode. Molecules 28, 4280 (2023).
[165] S. He, S. Huang, Y. Zhao, H. Qin, Y. Shan et al., Design of a dual-electrolyte battery system based on a high-energy NCM811-Si/C full battery electrode-compatible electrolyte. ACS Appl. Mater. Interfaces 13, 54069–54078 (2021).
[166] Y. Lv, Z. Han, R. Jia, L. Shi, S. Yuan, Porous interface for fast charging silicon anode. Battery Energy 1, 20220009 (2022).
[167] T. Li, X. Huang, S. Lei, J. Zhang, X. Li et al., Two-dimensional nitrogen and phosphorus Co-doped mesoporous carbon-graphene nanosheets anode for high-performance potassium-ion capacitor. Energy Mater. 3, 300018 (2023).
[168] X.L. Huang, F. Zhao, Y. Qi, Y.-A. Qiu, J.S. Chen et al., Red phosphorus: a rising star of anode materials for advanced K-ion batteries. Energy Storage Mater. 42, 193–208 (2021).
[169] C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie et al., Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 32, e1908470 (2020).
[170] D. Yu, L. Cheng, M. Chen, J. Wang, W. Zhou et al., High-performance phosphorus-graphite dual-ion battery. ACS Appl. Mater. Interfaces 11, 45755–45762 (2019).
[171] C. Wu, S.-X. Dou, Y. Yu The state and challenges of anode materials based on conversion reactions for sodium storage. Small 14, 1703671 (2018).
[172] L. Fang, N. Bahlawane, W. Sun, H. Pan, B.B. Xu et al., Conversion-alloying anode materials for sodium ion batteries. Small 17, e2101137 (2021).
[173] J. Kang, Z. Zhao, H. Li, Y. Meng, B. Hu et al., An overview of aqueous zinc-ion batteries based on conversion-type cathodes. Energy Mater. 2, 200009 (2022).
[174] M. Zheng, H. Tang, L. Li, Q. Hu, L. Zhang et al., Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv. Sci. 5, 1700592 (2018).
[175] S. Bellani, F. Wang, G. Longoni, L. Najafi, R. Oropesa-Nuñez et al., WS2-graphite dual-ion batteries. Nano Lett. 18, 7155–7164 (2018).
[176] X. Yang, Y. Gao, L. Fan, A.M. Rao, J. Zhou et al., Skin-inspired conversion anodes for high-capacity and stable potassium ion batteries. Adv. Energy Mater. 13, 2302589 (2023).
[177] C. Wei, J. Song, Y. Wang, X. Tang, X. Liu, Recent development of aqueous multivalent-ion batteries based on conversion chemistry. Adv. Funct. Mater. 33, 2304223 (2023).
[178] J. Huang, Y. Gao, Z. Peng, A primitive model for intercalation–conversion bifunctional battery materials. Battery Energy 1, 20210016 (2022).
[179] B. Liu, Y. Liu, X. Hu, G. Zhong, J. Li et al., N-doped carbon modifying MoSSe nanosheets on hollow cubic carbon for high-performance anodes of sodium-based dual-ion batteries. Adv. Funct. Mater. 31, 2101066 (2021).
[180] Y. Liu, M. Qiu, X. Hu, J. Yuan, W. Liao et al., Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries. Nano-Micro Lett. 15, 104 (2023).
[181] H. Wu, L. Li, W. Yuan, Nano-cubic α-Fe2O3 anode for Li+/Na+ based dual-ion full battery. Chem. Eng. J. 442, 136259 (2022).
[182] H. Zhu, F. Zhang, J. Li, Y. Tang, Penne-like MoS2/carbon nanocomposite as anode for sodium-ion-based dual-ion battery. Small 14, 1703951 (2018).
[183] K. Qian, L. Li, D. Yang, B. Wang, H. Wang et al., Metal-electronegativity-induced, synchronously formed hetero- and vacancy-structures of selenide molybdenum for non-aqueous sodium-based dual-ion storage. Adv. Funct. Mater. 33, 2213009 (2023).
[184] L. Su, H. Charalambous, Z. Cui, A. Manthiram, High-efficiency, anode-free lithium–metal batteries with a close-packed homogeneous lithium morphology. Energy Environ. Sci. 15, 843–854 (2022).
[185] J. Liu, N. Pei, X. Yang, R. Li, H. Hua et al., Recent advances in lithiophilic materials: material design and prospects for lithium metal anode application. Energy Mater. 3, 300024 (2023).
[186] X. Lei, Z. Ma, L. Bai, L. Wang, Y. Ding et al., Porous ZnP matrix for long-lifespan and dendrite-free Zn metal anodes. Battery Energy 2, 20230024 (2023).
[187] G. Lu, S. Li, K. Yue, H. Yuan, J. Luo et al., Electrolytic construction of nanosphere-assembled protective layer toward stable lithium metal anode. Battery Energy 2, 20230044 (2023).
[188] Y. Wang, S. Wang, Y. Zhang, P.-K. Lee, D.Y.W. Yu, Unlocking the true capability of graphite-based dual-ion batteries with ethyl methyl carbonate electrolyte. ACS Appl. Energy Mater. 2, 7512–7517 (2019).
[189] B. Ji, W. Yao, Y. Tang, High-performance rechargeable zinc-based dual-ion batteries. Sustainable Energy Fuels 4, 101–107 (2020).
[190] H. Sun, A. Celadon, S.G. Cloutier, K. Al-Haddad, S. Sun et al., Lithium dendrites in all-solid-state batteries: from formation to suppression. Battery Energy 3, 20230062 (2024).
[191] Z. Li, A.W. Robertson, Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Zn-ion batteries. Battery Energy 2, 20220029 (2023).
[192] Yuan Y., S.D. Pu, Gao X., A.W. Robertson, The application of in situ liquid cell TEM in advanced battery research. Energy Mater. 3, 300034 (2023).
[193] X.-T. Xi, W.-H. Li, B.-H. Hou, Y. Yang, Z.-Y. Gu et al., Dendrite-free lithium anode enables the lithium// graphite dual-ion battery with much improved cyclic stability. ACS Appl. Energy Mater. 2, 201–206 (2019).
[194] L.-N. Wu, J. Peng, Y.-K. Sun, F.-M. Han, Y.-F. Wen et al., High-energy density Li metal dual-ion battery with a lithium nitrate-modified carbonate-based electrolyte. ACS Appl. Mater. Interfaces 11, 18504–18510 (2019).
[195] J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019).
[196] H. Wu, S. Luo, W. Zheng, L. Li, Y. Fang et al., Metal- and binder-free dual-ion battery based on green synthetic nano-embroidered spherical organic anode and pure ionic liquid electrolyte. Energy Mater. 4, 400015 (2024).
[197] J.J. Shea, C. Luo, Organic electrode materials for metal ion batteries. ACS Appl. Mater. Interfaces 12, 5361–5380 (2020).
[198] J. Peng, D. Wu, H. Li, L. Chen, F. Wu, Long-life high-capacity lithium battery with liquid organic cathode and sulfide solid electrolyte. Battery Energy 2, 20220059 (2023).
[199] J. Kim, Y. Kim, J. Yoo, G. Kwon, Y. Ko et al., Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8, 54–70 (2023).
[200] C. Tang, B. Wei, W. Tang, Y. Hong, M. Guo et al., Carbon-coating small-molecule organic bipolar electrodes for symmetric Li-dual-ion batteries. Chem. Eng. J. 474, 145114 (2023).
[201] T. Huang, M. Long, J. Xiao, H. Liu, G. Wang, Recent research on emerging organic electrode materials for energy storage. Energy Mater. 1, 100009 (2022).
[202] A. Banerjee, N. Khossossi, W. Luo, R. Ahuja, Promise and reality of organic electrodes from materials design and charge storage perspective. J. Mater. Chem. A 10, 15215–15234 (2022).
[203] X. Li, Y. Wang, L. Lv, G. Zhu, Q. Qu et al., Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries. Energy Mater. 2, 200014 (2022).
[204] I.A. Rodríguez-Pérez, C. Bommier, D.D. Fuller, D.P. Leonard, A.G. Williams et al., Toward higher capacities of hydrocarbon cathodes in dual-ion batteries. ACS Appl. Mater. Interfaces 10, 43311–43315 (2018).
[205] D. Kong, T. Cai, H. Fan, H. Hu, X. Wang et al., Polycyclic aromatic hydrocarbons as a new class of promising cathode materials for aluminum-ion batteries. Angew. Chem. Int. Ed. 61, e202114681 (2022).
[206] K. Minami, T. Masese, K. Yoshii, Coronene: a high-voltage anion insertion and de-insertion cathode for potassium-ion batteries. New J. Chem. 45, 4921–4924 (2021).
[207] S.S. Manna, B. Pathak, Pyrrolidinium-based organic cation (BMP)-intercalated organic (coronene) anode for high-voltage dual-ion batteries: a comparative study with graphite. J. Phys. Chem. C 126, 9264–9274 (2022).
[208] Y. Fang, W. Bi, A. Wang, W. Zheng, W. Yuan et al., Enabling dual-ion batteries via the reversible storage of Pyr14+ cations into coronene crystal. Energy Technol. 8, 2000223 (2020).
[209] C. Zhang, W. Ma, C. Han, L.-W. Luo, A. Daniyar et al., Tailoring the linking patterns of polypyrene cathodes for high-performance aqueous Zn dual-ion batteries. Energy Environ. Sci. 14, 462–472 (2021).
[210] Q. Yu, Z. Xue, M. Li, P. Qiu, C. Li et al., Electrochemical activity of nitrogen-containing groups in organic electrode materials and related improvement strategies. Adv. Energy Mater. 11, 2002523 (2021).
[211] F.A. Obrezkov, A.F. Shestakov, S.G. Vasil’ev, K.J. Stevenson, P.A. Troshin, Polydiphenylamine as a promising high-energy cathode material for dual-ion batteries. J. Mater. Chem. A 9, 2864–2871 (2021).
[212] P. Acker, L. Rzesny, C.F.N. Marchiori, C.M. Araujo, B. Esser, π-conjugation enables ultra-high rate capabilities and cycling stabilities in phenothiazine copolymers as cathode-active battery materials. Adv. Funct. Mater. 29, 1906436 (2019).
[213] J. Wang, Y. Tong, W. Huang, Q. Zhang, Conjugated Azo compounds as a ctive materials for rechargeable sodium-metal batteries with high-rate performance. Batteries Supercaps 6, e202200413 (2023).
[214] G. Dai, Y. He, Z. Niu, P. He, C. Zhang et al., A dual-ion organic symmetric battery constructed from phenazine-based artificial bipolar molecules. Angew. Chem. Int. Ed. 58, 9902–9906 (2019).
[215] H.-G. Wang, H. Wang, Y. Li, Y. Wang, Z. Si, A bipolar metal phthalocyanine complex for sodium dual-ion battery. J. Energy Chem. 58, 9–16 (2021).
[216] W. Ma, L.-W. Luo, P. Dong, P. Zheng, X. Huang et al., Toward high-performance dihydrophenazine-based conjugated microporous polymer cathodes for dual-ion batteries through donor–acceptor structural design. Adv. Funct. Mater. 31, 2105027 (2021).
[217] J. Wang, G. Li, Q. Wang, L. Huang, X. Gan et al., Influence of alkali metal ions (Li+, Na+, and K+) on the redox thermodynamics and kinetics of organic electrode materials for rechargeable batteries. Energy Storage Mater. 63, 102956 (2023).
[218] T. Kong, W. Zhu, B. Jiang, X. Liao, R. Xiao, The mechanism of modification of poly(anthraquinonylsulfide) organic electrode materials. ChemistrySelect 7, e202201683 (2022).
[219] Y.-B. Fang, W. Zheng, L. Li, W.-H. Yuan, An ultrahigh rate ionic liquid dual-ion battery based on a poly(anthraquinonyl sulfide) anode. ACS Appl. Energy Mater. 3, 12276–12283 (2020).
[220] F. Lambert, Y. Danten, C. Gatti, B. Bocquet, A.A. Franco et al., Carbonyl-based redox-active compounds as organic electrodes for batteries: escape from middle-high redox potentials and further improvement? J. Phys. Chem. A 127, 5104–5119 (2023).
[221] S. Zhang, K. Zhu, Y. Gao, D. Cao, A long cycle stability and high rate performance organic anode for rechargeable aqueous ammonium-ion battery. ACS Energy Lett. 8, 889–897 (2023).
[222] Q.-Q. Sun, T. Sun, J.-Y. Du, Z.-L. Xie, D.-Y. Yang et al., In situ electrochemical activation of hydroxyl polymer cathode for high-performance aqueous zinc-organic batteries. Angew. Chem. Int. Ed. 62, e202307365 (2023).
[223] E.Y. Kim, M. Mohammadiroudbari, F. Chen, Z. Yang, C. Luo, A carbonyl and azo-based polymer cathode for low-temperature Na-ion batteries. ACS Nano 18, 4159–4169 (2024).
[224] A. Yu, Q. Pan, M. Zhang, D. Xie, Y. Tang, Fast rate and long life potassium-ion based dual-ion battery through 3D porous organic negative electrode. Adv. Funct. Mater. 30, 2001440 (2020).
[225] F. Zhang, M. Wu, X. Wang, Q. Xiang, Y. Wu et al., Reversible multi-electron redox chemistry of organic salt as anode for high-performance Li-ion/dual-ion batteries. Chem. Eng. J. 457, 141335 (2023).
[226] H. Wu, T. Hu, S. Chang, L. Li, W. Yuan, Sodium-based dual-ion battery based on the organic anode and ionic liquid electrolyte. ACS Appl. Mater. Interfaces 13, 44254–44265 (2021).
[227] J. Li, C. Han, X. Ou, Y. Tang, Concentrated electrolyte for high-performance Ca-ion battery based on organic anode and graphite cathode. Angew. Chem. Int. Ed. 61, e202116668 (2022).
[228] W. Zhu, Y. Huang, B. Jiang, R. Xiao, A metal-free ionic liquid dual-ion battery based on the reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 1, 4, 5, 8-naphthalenetetracarboxylic dianhydride. J. Mol. Liq. 339, 116789 (2021).
[229] Y. Fang, C. Chen, J. Fan, M. Zhang, W. Yuan et al., Reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 5, 7, 12, 14-pentacenetetrone from a pure ionic liquid electrolyte for dual-ion batteries. Chem. Commun. 55, 8333–8336 (2019).
[230] K.-I. Kim, L. Tang, J.M. Muratli, C. Fang, X. Ji, A graphite∥PTCDI aqueous dual-ion battery. ChemSusChem 15, e202102394 (2022).
[231] W.-Y. Jao, C.-W. Tai, C.-C. Chang, C.-C. Hu, Non-aqueous calcium-based dual-ion batteries with an organic electrode of high-rate performance. Energy Storage Mater. 63, 102990 (2023).
[232] Z. Zhao, Y. Lei, L. Shi, Z. Tian, M.N. Hedhili et al., A 2.75 V ammonium-based dual-ion battery. Angew. Chem. Int. Ed. 61, e202212941 (2022).
[233] H. Wu, Z. Ye, J. Zhu, S. Luo, L. Li et al., High discharge capacity and ultra-fast-charging sodium dual-ion battery based on insoluble organic polymer anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 14, 49774–49784 (2022).
[234] Zhu Y., Yin J., A.-H. Emwas, O.F. Mohammed, H.N. Alshareef, An aqueous Mg2+-based dual-ion battery with high power density. Adv. Funct. Mater. 31, 2107523 (2021).
[235] C. Li, Y. Yuan, M. Yue, Q. Hu, X. Ren et al., Recent advances in pristine iron triad metal-organic framework cathodes for alkali metal-ion batteries. Small 20, e2310373 (2024).
[236] L. Yang, J. Chen, S. Park, H. Wang, Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries. Energy Mater. 3, 300042 (2023).
[237] R. Sun, M. Dou, Z. Chen, R. Wang, X. Zheng et al., Engineering strategies of metal-organic frameworks towardadvanced batteries. Battery Energy 2, 20220064 (2023).
[238] X. Wu, S. Zhang, X. Xu, F. Wen, H. Wang et al., Lithiophilic covalent organic framework as anode coating for high-performance lithium metal batteries. Angew. Chem. Int. Ed. 63, e202319355 (2024).
[239] J.H. Cho, Y. Kim, H.K. Yu, S.Y. Kim, Advancements in two-dimensional covalent organic framework nanosheets for electrocatalytic energy conversion: current and future prospects. Energy Mater. 4, 400013 (2024).
[240] C. Zheng, Y. Yao, X. Rui, Y. Feng, D. Yang et al., Functional MXene-based materials for next-generation rechargeable batteries. Adv. Mater. 34, e2204988 (2022).
[241] R.S. Mane, S. Mane, V. Somkuwar, N.V. Thombre, A.V. Patwardhan et al., A novel hierarchically hybrid structure of MXene and Bi-ligand ZIF-67 based trifunctional electrocatalyst for zinc-air battery and water splitting. Battery Energy 2, 20230019 (2023).
[242] J.E. Zhou, R.C.K. Reddy, A. Zhong, Y. Li, Q. Huang et al., Metal-organic framework-based materials for advanced sodium storage: development and anticipation. Adv. Mater. 36, e2312471 (2024).
[243] Y. Yuan, Z. Zhang, Z. Zhang, K.-T. Bang, Y. Tian et al., Highly conductive imidazolate covalent organic frameworks with ether chains as solid electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 63, e202402202 (2024).
[244] Y. Du, Y. Liu, F. Cao, H. Ye, Defect-induced-reduced Au quantum Dots@MXene decorated separator enables lithium-sulfur batteries with high sulfur utilization. Energy Mater. 4, 400014 (2024).
[245] J. Li, R. Li, W. Wang, K. Lan, D. Zhao, Ordered mesoporous crystalline frameworks toward promising energy applications. Adv. Mater. 36, e2311460 (2024).
[246] L. Wen, K. Sun, X. Liu, W. Yang, L. Li et al., Electronic state and microenvironment modulation of metal nanoparticles stabilized by MOFs for boosting electrocatalytic nitrogen reduction. Adv. Mater. 35, e2210669 (2023).
[247] Y. Zhang, Q. Li, G. Zhang, T. Lv, P. Geng et al., Recent advances in the type, synthesis and electrochemical application of defective metal-organic frameworks. Energy Mater. 3, 300022 (2023).
[248] J. Liu, Y. Zhou, G. Xing, M. Qi, Z. Tang et al., 2D conductive metal–organic framework with anthraquinone built-In active sites as cathode for aqueous zinc ion battery. Adv. Funct. Mater. 34, 2312636 (2024).
[249] H. Lu, Q. Zeng, L. Xu, Y. Xiao, L. Xie et al., Multimodal engineering of catalytic interfaces confers multi-site metal-organic framework for internal preconcentration and accelerating redox kinetics in lithium-sulfur batteries. Angew. Chem. Int. Ed. 63, e202318859 (2024).
[250] B.-J. Xin, X.-L. Wu, Research progresses on metal-organic frameworks for sodium/potassium-ion batteries. Battery Energy 3, 20230074 (2024).
[251] M.L. Aubrey, J.R. Long, A dual-ion battery cathode via oxidative insertion of anions in a metal-organic framework. J. Am. Chem. Soc. 137, 13594–13602 (2015).
[252] J. Fan, Y. Fang, Q. Xiao, R. Huang, L. Li et al., A dual-ion battery with a ferric ferricyanide anode enabling reversible Na+ intercalation. Energy Technol. 7, 1800978 (2019).
[253] Q. Jiang, P. Xiong, J. Liu, Z. Xie, Q. Wang et al., A redox-active 2D metal-organic framework for efficient lithium storage with extraordinary high capacity. Angew. Chem. Int. Ed. 59, 5273–5277 (2020).
[254] H. Wang, Q. Wu, Y. Wang, X. Lv, H.-G. Wang, A redox-active metal-organic compound for lithium/sodium-based dual-ion batteries. J. Colloid Interface Sci. 606, 1024–1030 (2022).
[255] K. Fan, C. Fu, Y. Chen, C. Zhang, G. Zhang et al., Framework dimensional control boosting charge storage in conjugated coordination polymers. Adv. Sci. 10, e2205760 (2023).
[256] H.-G. Wang, Q. Li, Q. Wu, Z. Si, X. Lv et al., Conjugated microporous polymers with bipolar and double redox-active centers for high-performance dual-ion, organic symmetric battery. Adv. Energy Mater. 11, 2100381 (2021).
[257] D. Zhu, L. Sheng, J. Wang, L. Wang, H. Xu et al., Boosting sulfur-based cathode performance via confined reactions in covalent organic frameworks with polarized sites. Battery Energy 2, 20230002 (2023).
[258] X. Liu, X. Ding, T. Zheng, Y. Jin, H. Wang et al., Single cobalt ion-immobilized covalent organic framework for lithium-sulfur batteries with enhanced rate capabilities. ACS Appl. Mater. Interfaces 16, 4741–4750 (2024).
[259] X. Xu, J. Zhang, Z. Zhang, G. Lu, W. Cao et al., All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett. 16, 116 (2024).
[260] S. Wei, J. Wang, Y. Li, Z. Fang, L. Wang et al., Recent progress in COF-based electrode materials for rechargeable metal-ion batteries. Nano Res. 16, 6753–6770 (2023).
[261] Y. Xu, P. Cai, K. Chen, Q. Chen, Z. Wen et al., Hybrid acid/alkali all covalent organic frameworks battery. Angew. Chem. Int. Ed. 62, e202215584 (2023).
[262] B. Sun, Z. Sun, Y. Yang, X.L. Huang, S.C. Jun et al., Covalent organic frameworks: their composites and derivatives for rechargeable metal-ion batteries. ACS Nano 18, 28–66 (2024).
[263] L. Zhou, S. Jo, M. Park, L. Fang, K. Zhang et al., Structural engineering of covalent organic frameworks for rechargeable batteries. Adv. Energy Mater. 11, 2003054 (2021).
[264] S. Haldar, A. Schneemann, S. Kaskel, Covalent organic frameworks as model materials for fundamental and mechanistic understanding of organic battery design principles. J. Am. Chem. Soc. 145, 13494–13513 (2023).
[265] L. Zhang, X. Zhang, D. Han, L. Zhai, L. Mi, Recent progress in design principles of covalent organic frameworks for rechargeable metal-ion batteries. Small Methods 7, e2300687 (2023).
[266] Y. Ge, J. Li, Y. Meng, D. Xiao, Tuning the structure characteristic of the flexible covalent organic framework (COF) meets a high performance for lithium-sulfur batteries. Nano Energy 109, 108297 (2023).
[267] L. Li, Y. Shi, S. Jia, C. Wang, D. Zhang, Recent advances in emerging metal–organic and covalent–organic frameworks for zinc-ion batteries. J. Energy Storage 73, 108914 (2023).
[268] B. Hu, J. Xu, Z. Fan, C. Xu, S. Han et al., Covalent organic framework based lithium–sulfur batteries: materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 13, 2203540 (2023).
[269] M. Chafiq, A. Chaouiki, Y.G. Ko, Advances in COFs for energy storage devices: Harnessing the potential of covalent organic framework materials. Energy Storage Mater. 63, 103014 (2023).
[270] G. Zhao, Y. Sun, Y. Yang, C. Zhang, Q. An et al., Molecular engineering regulation redox-dual-active-center covalent organic frameworks-based anode for high-performance Li storage. EcoMat 4, e12221 (2022).
[271] H. Zhang, L. Zhong, J. Xie, F. Yang, X. Liu et al., A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries. Adv. Mater. 33, e2101857 (2021).
[272] R. Kushwaha, C. Jain, P. Shekhar, D. Rase, R. Illathvalappil et al., Made to measure squaramide COF cathode for zinc dual-ion battery with enriched storage via redox electrolyte. Adv. Energy Mater. 13, 2301049 (2023).
[273] Y. Liu, Y. Lu, A. Hossain Khan, G. Wang, Y. Wang et al., Redox-bipolar polyimide two-dimensional covalent organic framework cathodes for durable aluminium batteries. Angew. Chem. Int. Ed. 62, e202306091 (2023).
[274] S. Gu, J. Chen, R. Hao, X. Chen, Z. Wang et al., Redox of anionic and cationic radical intermediates in a bipolar polyimide COF for high-performance dual-ion organic batteries. Chem. Eng. J. 454, 139877 (2023).
[275] Q. Ai, Q. Fang, J. Liang, X. Xu, T. Zhai et al., Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy 72, 104657 (2020).
[276] X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022).
[277] X. Jin, Y. Huang, M. Zhang, Z. Wang, Q. Meng et al., A flower-like VO2(B)/V2CTx heterojunction as high kinetic rechargeable anode for sodium-ion batteries. Battery Energy 2, 20230029 (2023).
[278] Q. Liang, S. Wang, X. Lu, X. Jia, J. Yang et al., High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries. ACS Nano 18, 2395–2408 (2024).
[279] A. Sikdar, F. Héraly, H. Zhang, S. Hall, K. Pang et al., Hierarchically porous 3D freestanding holey-MXene framework via mild oxidation of self-assembled MXene hydrogel for ultrafast pseudocapacitive energy storage. ACS Nano 18, 3707–3719 (2024).
[280] N. Kitchamsetti, J.S. Cho, A roadmap of recent advances in MXene@MOF hybrids, its derived composites: Synthesis, properties, and their utilization as an electrode for supercapacitors, rechargeable batteries and electrocatalysis. J. Energy Storage 80, 110293 (2024).
[281] W. Hu, M. Yang, T. Fan, Z. Li, Y. Wang et al., A simple, efficient, fluorine-free synthesis method of MXene/Ti3C2Tx anode through molten salt etching for sodium-ion batteries. Battery Energy 2, 20230021 (2023).
[282] J. Li, J. Hao, R. Wang, Q. Yuan, T. Wang et al., Ultra-stable cycling of organic carboxylate molecule hydrogen bonded with inorganic Ti3C2Tx MXene with improved redox kinetics for sodium-ion batteries. Battery Energy 3, 20230033 (2024).
[283] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).
[284] T. Sun, S. Wang, M. Xu, N. Qiao, Q. Zhu et al., High-performance sulfurized polyacrylonitrile cathode by using MXene as a conductive and catalytic binder for room-temperature Na/S batteries. ACS Appl. Mater. Interfaces 16, 10093–10103 (2024).
[285] M. Zhang, R. Liang, N. Yang, R. Gao, Y. Zheng et al., Eutectic etching toward in-plane porosity manipulation of Cl-terminated MXene for high-performance dual-ion battery anode. Adv. Energy Mater. 12, 2102493 (2022).
[286] D. Sabaghi, J. Polčák, H. Yang, X. Li, A. Morag et al., Multifunctional molecule-grafted V2C MXene as high-kinetics potassium-ion-intercalation anodes for dual-ion energy storage devices. Adv. Energy Mater. 14, 2302961 (2024).
[287] X. He, B. Wei, W. Tang, M. Guo, J. Hu et al., Single bipolar polymer electrode with MXene for Na/K-based dual-ion symmetric batteries. Adv. Funct. Mater. 34, 2311740 (2024).
[288] Y. Wang, J. Song, W.-Y. Wong, Constructing 2D sandwich-like MOF/MXene heterostructures for durable and fast aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202218343 (2023).
[289] H. Guo, M. Elmanzalawy, P. Sivakumar, S. Fleischmann, Unifying electrolyte formulation and electrode nanoconfinement design to enable new ion–solvent cointercalation chemistries. Energy Environ. Sci. 17, 2100–2116 (2024).
[290] T. Tanaji Salunkhe, J.H. Yoo, S.-W. Lee, I.T. Kim, Exploring inexpensive electrodes for safer and evolved dual-ion batteries using modified electrolytes for enhanced energy density. J. Electroanal. Chem. 953, 118022 (2024).
[291] Y. Jiang, Q. Qu, L. Lv, J. Shao, W. Zhang et al., A breakthrough in Coulombic reversibility of dual-ion batteries at quick charge and underlying mechanisms. J. Energy Storage 81, 110403 (2024).
[292] X. Wang, Y. Wang, H. Ma, Z. Wang, X. Xu et al., Solid silicon nanosheet sandwiched by self-assembled honeycomb silicon nanosheets enabling long life at high current density for a lithium-ion battery anode. ACS Appl. Mater. Interfaces 15, 15409–15419 (2023).
[293] Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16, 48 (2023).
[294] X. Lei, X. Liang, R. Yang, F. Zhang, C. Wang et al., Rational design strategy of novel energy storage systems: toward high-performance rechargeable magnesium batteries. Small 18, e2200418 (2022).
[295] G. Wang, G. Wang, L. Fei, L. Zhao, H. Zhang, Structural engineering of anode materials for low-temperature lithium-ion batteries: mechanisms, strategies, and prospects. Nano-Micro Lett. 16, 150 (2024).
[296] Q. Liu, X. Liu, Y. Liu, M. Huang, W. Wang et al., Atomic-level customization of zinc crystallization kinetics at the interface for high-utilization Zn anodes. ACS Nano 18, 4932–4943 (2024).
[297] X. Gao, Z. Xing, M. Wang, C. Nie, Z. Shang et al., Comprehensive insights into solid-state electrolytes and electrode-electrolyte interfaces in all-solid-state sodium-ion batteries. Energy Storage Mater. 60, 102821 (2023).
[298] A. Kotronia, H.D. Asfaw, K. Edström, Evaluating electrolyte additives in dual-ion batteries: overcoming common pitfalls. Electrochim. Acta 459, 142517 (2023).
[299] M. Ma, M. Zhang, B. Jiang, Y. Du, B. Hu et al., A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode–electrolyte interfaces. Mater. Chem. Front. 7, 1268–1297 (2023).
[300] W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15, 107 (2023).
[301] B. Li, C. Wang, R. Yu, J. Han, S. Jiang et al., Recent progress on metal–organic framework/polymer composite electrolytes for solid-state lithium metal batteries: ion transport regulation and interface engineering. Energy Environ. Sci. 17, 1854–1884 (2024).
[302] Y. Wang, H. Wang, Hierarchical intercalation of tetrafluoroborate anion into graphite electrode from sulfolane. J. Energy Chem. 75, 378–382 (2022).
[303] X. Cheng, D. Li, Y. Jiang, F. Huang, S. Li, Advances in electrochemical energy storage over metallic bismuth-based materials. Materials (Basel) 17, 21 (2023).
[304] D. Hui, J.Y. Liu, F.L. Pan, N. Chen, Z.X. Wei et al., Binary metallic CuCo5S8 anode for high volumetric sodium-ion storage. Chemistry 29, e202302244 (2023).
[305] M.K. Shobana, Self-supported materials for battery technology-a review. J. Alloys Compd. 831, 154844 (2020).
[306] E. Zhao, Z.-G. Zhang, X. Li, L. He, X. Yu et al., Neutron-based characterization techniques for lithium-ion battery research. Chin. Phys. B 29, 018201 (2020).
[307] Y. Xiang, X. Li, Y. Cheng, X. Sun, Y. Yang, Advanced characterization techniques for solid state lithium battery research. Mater. Today 36, 139–157 (2020).
[308] E. Zhao, K. Nie, X. Yu, Y.-S. Hu, F. Wang et al., Advanced characterization techniques in promoting mechanism understanding for lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707543 (2018).
[309] J. Lu, T. Wu, K. Amine, State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2, 17011 (2017).