• Acta Photonica Sinica
  • Vol. 44, Issue 4, 419001 (2015)
LI Jun-peng*, ZHOU Jun, JIANG Tao, and LIU Yan-ting
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20154404.0419001 Cite this Article
    LI Jun-peng, ZHOU Jun, JIANG Tao, LIU Yan-ting. SERS Characteristics of Sea Urchin-like Gold Nanoparticles Dependent on Their Surface Morphology[J]. Acta Photonica Sinica, 2015, 44(4): 419001 Copy Citation Text show less
    References

    [1] MICHAELS A M, NIRMAL M, BRUS L E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals[J]. Journal of the American Chemical Society, 1999, 121(43): 9932-9939.

    [2] ANKER J N, HALL W P, LYANDRES O, et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 2008, 7(6): 442-453.

    [3] LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.

    [4] SMYTHE E J, DICKEY M D, BAO J M, et al. Optical antenna arrays on a fiber facet for in situ Surface-Enhanced Raman scattering detection[J]. Nano Letters, 2009, 9(3): 1132-1138.

    [5] QIAN X M, PENG X H, ANSARI D O, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nature Biotechnology, 2008, 26(1): 83-90.

    [6] XIA Y N, XIONG Y J, LIM B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics[J]. Angewandte Chemie International Edition, 2009, 48(1): 60-103.

    [7] MOSKOVITS M. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics, 1985, 57(3): 783-826.

    [8] SMITH W E. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis[J]. Chemical Society Reviews, 2008, 37(5): 955-964.

    [9] HUH Y S, CHUNG A J, ERICKSON D. Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis[J]. Microfluidics and Nanofluidics, 2009, 6(3): 285-297.

    [10] BELL S E J, SIRIMUTHU N M S. Quantitative surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2008, 37(5): 1012-1024.

    [11] WANG X X, YANG T, LI X, et al. Three-step electrodeposition synthesis of self-doped polyaniline nanofiber-supported flower-like Au microspheres for high-performance biosensing of DNA hybridization recognition[J]. Biosensors and Bioelectronics, 2011, 26(6): 2953-2959.

    [12] WANG H, HALAS N J. Mesoscopic Au “meatball” particles[J]. Advanced Materials, 2008, 20(4): 820-825.

    [13] KUMAR P S, PASTORIZA-SANTOS I, et al. High-yield synthesis and optical response of gold nanostars[J].Nanotechnology, 2008, 19(1): 015606.

    [14] XU F G, CUI K, SUN Y J, et al. Facile synthesis of urchin-like gold submicrostructures for nonenzymatic glucose sensing[J]. Talanta, 2010, 82(5): 1845-1852.

    [15] LIU Z, YANG Z B, PENG B, et al. Highly sensitive, uniform, and reproducible surface enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins[J]. Advanced Materials, 2014, 26(15): 2431-2439.

    [16] CHEN S H, WANG Z L, BALLATO J, et al. Monopod, bipod, tripod, and tetrapod gold nanocrystals[J]. Journal of the American Chemical Society, 2003, 125(52): 16186-16187.

    [17] LIANG H Y, LI Z P, WANG W Z, et al. Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering[J]. Advanced Materials, 2009, 21(45): 4614-4618.

    [18] KUO C H, HUANG M H. Synthesis of branched gold nanocrystals by a seeding growth approach[J]. Langmuir, 2005, 21(5): 2012-2016.

    [19] LU L H, AI K L, OZAKI Y. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape[J]. Langmuir, 2008, 24(3): 1058-1063.

    [20] WANG L, HU C, NEMOTO Y, et al. On the role of ascorbic acid in the synthesis of single-crystal hyperbranched platinum nanostructures[J]. Crystal Growth Dsign, 2010, 10(8): 3454-3460.

    [21] YUAN H, MA W H, CHEN C C, et al. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions[J]. Chemistry of Materials, 2007, 19(7): 1592-1600.

    [22] WU D J, JIANG S M, CHENG Y, et al. Fano-like resonance in symmetry-broken gold nanotube dimer[J]. Optics Express, 2012, 20(24): 26559-26567.

    [23] SUN Y G, XIA Y N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium[J]. Journal of the American Chemical Society, 2004, 126(12): 3892-3901.

    [24] LU X, TUAN H Y, CHEN J, et al. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium[J]. Journal of the American Chemical Society, 2007, 129(6): 1733-1742.

    [25] RE LU E C, BLACKIE E, MEYER M, et al. Surface enhanced raman scattering enhancement factors: a comprehensive study[J]. Journal of Physics Chemical C, 2007, 111(37): 13794-13803.

    CLP Journals

    [1] WANG Xiang-xian, PANG Zhi-yuan, ZHANG Dong-yang, BAI Xue-lin, FENG Wang-jun, QI Yun-ping. SPs of Composite Structure of Dielectric Grating/Metal Film with Silver Cube[J]. Acta Photonica Sinica, 2018, 47(11): 1131001

    LI Jun-peng, ZHOU Jun, JIANG Tao, LIU Yan-ting. SERS Characteristics of Sea Urchin-like Gold Nanoparticles Dependent on Their Surface Morphology[J]. Acta Photonica Sinica, 2015, 44(4): 419001
    Download Citation