• Chinese Journal of Lasers
  • Vol. 46, Issue 9, 905002 (2019)
Wang Zhengxi1、2, Zhang Bao1、*, and Li Xiantao1
Author Affiliations
  • 1Key Laboratory of Aviation Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL201946.0905002 Cite this Article Set citation alerts
    Wang Zhengxi, Zhang Bao, Li Xiantao. Improving Anti-Disturbance Capability of Fast Steering Mirror by Adaptive Robust Control[J]. Chinese Journal of Lasers, 2019, 46(9): 905002 Copy Citation Text show less

    Abstract

    Fast steering mirrors (FSM) are widely used in aeronautical optoelectronic stabilization platform for line-of-sight stabilization. The stability of the FSM is affected by various disturbances especially the vibration in the aviation environment. Traditional anti-disturbance methods, such as proportion integration differentiation controller (PID) and disturbance observer (DOB), have a little effect on suppressing disturbance in FSM. To solve these problems, a fast anti-disturbance strategy based on adaptive robust control (ARC) is proposed. The experimental results show that the steady-state root mean square error of FSM in vibration environment is reduced by about 80% compared with that of the PID control strategy and about 60% compared with that of the DOB control strategy after the introduction of the ARC. It shows that ARC has remarkable effect on improving the anti-interference ability and stability of FSM, and has large engineering application value.
    Wang Zhengxi, Zhang Bao, Li Xiantao. Improving Anti-Disturbance Capability of Fast Steering Mirror by Adaptive Robust Control[J]. Chinese Journal of Lasers, 2019, 46(9): 905002
    Download Citation