• Photonics Research
  • Vol. 9, Issue 10, 2116 (2021)
Peipei Wang1, Wenjie Xiong1, Zebin Huang1, Yanliang He1, Zhiqiang Xie1, Junmin Liu2, Huapeng Ye3, Ying Li1, Dianyuan Fan1, and Shuqing Chen1、*
Author Affiliations
  • 1International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
  • 2College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
  • 3Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
  • show less
    DOI: 10.1364/PRJ.432919 Cite this Article Set citation alerts
    Peipei Wang, Wenjie Xiong, Zebin Huang, Yanliang He, Zhiqiang Xie, Junmin Liu, Huapeng Ye, Ying Li, Dianyuan Fan, Shuqing Chen. Orbital angular momentum mode logical operation using optical diffractive neural network[J]. Photonics Research, 2021, 9(10): 2116 Copy Citation Text show less
    References

    [1] J. Touch, A.-H. Badawy, V. J. Sorger. Optical computing. Nanophotonics, 6, 503-505(2017).

    [2] A. A. Sawchuk, T. C. Strand. Digital optical computing. Proc. IEEE, 72, 758-779(1984).

    [3] H. J. Caulfield, S. Dolev. Why future supercomputing requires optics. Nat. Photonics, 4, 261-263(2010).

    [4] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev, C. Forlivesi, F. Kawsar. Squeezing deep learning into mobile and embedded devices. IEEE Pervasive Comput., 16, 82-88(2017).

    [5] Z. Gu, Y. Gao, X. Liu. Optronic convolutional neural networks of multi-layers with different functions executed in optics for image classification. Opt. Express, 29, 5877-5889(2021).

    [6] D. R. Solli, B. Jalali. Analog optical computing. Nat. Photonics, 9, 704-706(2015).

    [7] D. Xu, S. He, J. Zhou, S. Chen, S. Wen, H. Luo. Optical analog computing of two-dimensional spatial differentiation based on the Brewster effect. Opt. Lett., 45, 6867-6870(2020).

    [8] H. Rajabalipanah, A. Abdolali, S. Iqbal, L. Zhang, T. J. Cui. Analog signal processing through space-time digital metasurfaces. Nanophotonics, 10, 1753-1764(2021).

    [9] D. Woods, T. J. Naughton. Optical computing. Appl. Math. Comput., 215, 1417-1430(2009).

    [10] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [11] L. Allen, S. M. Barnett, M. J. Padgett. Optical Angular Momentum(2016).

    [12] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [13] J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [14] Y. He, P. Wang, C. Wang, J. Liu, H. Ye, X. Zhou, Y. Li, S. Chen, X. Zhang, D. Fan. All-optical signal processing in structured light multiplexing with dielectric meta-optics. ACS Photon., 7, 135-146(2020).

    [15] J. Liu, P. Wang, X. Zhang, Y. He, X. Zhou, H. Ye, Y. Li, S. Xu, S. Chen, D. Fan. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Opt. Express, 27, 16671-16688(2019).

    [16] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [17] A. E. Willner, L. Li, G. Xie, Y. Ren, H. Huang, Y. Yue, N. Ahmed, M. J. Willner, A. J. Willner, Y. Yan, Z. Zhao, Z. Wang, C. Liu, M. Tur, S. Ashrafi. Orbital-angular-momentum-based reconfigurable optical switching and routing. Photon. Res., 4, B5-B8(2016).

    [18] Z. Xie, S. Gao, T. Lei, S. Feng, Y. Zhang, F. Li, J. Zhang, Z. Li, X. Yuan. Integrated (de)multiplexer for orbital angular momentum fiber communication. Photon. Res., 6, 743-749(2018).

    [19] W. Xiong, P. Wang, M. Cheng, J. Liu, Y. He, X. Zhou, J. Xiao, Y. Li, S. Chen, D. Fan. Convolutional neural network based atmospheric turbulence compensation for optical orbital angular momentum multiplexing. J. Lightwave Technol., 38, 1712-1721(2020).

    [20] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2020).

    [21] Q. Xiao, Q. Ma, T. Yan, L. Wu, C. Liu, Z. Wang, X. Wan, Q. Cheng, T. Cui. Orbital‐angular‐momentum‐encrypted holography based on coding information metasurface. Adv. Opt. Mater., 9, 2002155(2021).

    [22] S. Fu, T. Wang, C. Gao. Perfect optical vortex array with controllable diffraction order and topological charge. J. Opt. Soc. Am. A, 33, 1836-1842(2016).

    [23] C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, Q. Song. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [24] S. Fu, C. Gao. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photon. Res., 4, B1-B4(2016).

    [25] H. Wei, Z. Wang, X. Tian, M. Käll, H. Xu. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun., 2, 1-5(2011).

    [26] Y. Sang, X. Wu, S. S. Raja, C. Y. Wang, H. Li, Y. Ding, D. Liu, J. Zhou, H. Ahn, S. Gwo. Broadband multifunctional plasmonic logic gates. Adv. Opt. Mater., 6, 1701368(2018).

    [27] H. Liu, Z. Quan, Y. Cheng, S. Deng, L. Yuan. Ultra-compact universal linear-optical logic gate based on single rectangle plasmonic slot nanoantenna. Plasmonics, 16, 1-8(2021).

    [28] A. Pal, M. Z. Ahmed, S. Swarnakar. An optimized design of all-optical XOR, OR, and NOT gates using plasmonic waveguide. Opt. Quantum Electron., 53, 84(2021).

    [29] Q. Xu, M. Lipson. All-optical logic based on silicon micro-ring resonators. Opt. Express, 15, 924-929(2007).

    [30] M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, R. L. Williams. All-optical conditional logic with a nonlinear photonic crystal nanocavity. Appl. Phys. Lett., 95, 221102(2009).

    [31] Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, Q. Gong. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett., 12, 5784-5790(2012).

    [32] N. K. Fontaine, R. Ryf, H. Chen, D. T. Neilson, K. Kim, J. Carpenter. Laguerre-Gaussian mode sorter. Nat. Commun., 10, 1865(2019).

    [33] G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, J.-F. Morizur. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express, 22, 15599-15607(2014).

    [34] Y. Sakamaki, T. Saida, T. Hashimoto, H. Takahashi. New optical waveguide design based on wavefront matching method. J. Lightwave Technol., 25, 3511-3518(2007).

    [35] F. Brandt, M. Hiekkamäki, F. Bouchard, M. Huber, R. Fickler. High-dimensional quantum gates using full-field spatial modes of photons. Optica, 7, 98-107(2020).

    [36] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [37] T. Yan, J. Wu, T. Zhou, H. Xie, F. Xu, J. Fan, L. Fang, X. Lin, Q. Dai. Fourier-space diffractive deep neural network. Phys. Rev. Lett., 123, 023901(2019).

    [38] T. Zhou, X. Lin, J. Wu, Y. Chen, H. Xie, Y. Li, J. Fan, H. Wu, L. Fang, Q. Dai. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics, 15, 367-373(2021).

    [39] M. Veli, D. Mengu, N. T. Yardimci, Y. Luo, J. Li, Y. Rivenson, M. Jarrahi, A. Ozcan. Terahertz pulse shaping using diffractive surfaces. Nat. Commun., 12, 37(2021).

    [40] J. Shi, D. Wei, C. Hu, M. Chen, K. Liu, J. Luo, X. Zhang. Robust light beam diffractive shaping based on a kind of compact all-optical neural network. Opt. Express, 29, 7084-7099(2021).

    [41] Z. Huang, P. Wang, J. Liu, W. Xiong, Y. He, J. Xiao, H. Ye, Y. Li, S. Chen, D. Fan. All-optical signal processing of vortex beams with diffractive deep neural networks. Phys. Rev. Appl., 15, 014037(2021).

    [42] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161-204(2011).

    [43] L. Jing, X. Lin, Z. Wang, I. Kaminer, H. Hu, E. Li, Y. Liu, M. Chen, B. Zhang, H. Chen. Polarization shaping of free‐electron radiation by gradient bianisotropic metasurfaces. Laser Photon. Rev., 15, 2000426(2021).

    [44] H. Lu, B. Zheng, T. Cai, C. Qian, Y. Yang, Z. Wang, H. Chen. Frequency‐controlled focusing using achromatic metasurface. Adv. Opt. Mater., 9, 2001311(2021).

    [45] P. Xu, H. Tian, W. Jiang, Z. Chen, T. Cao, C. Qiu, T. Cui. Phase and polarization modulations using radiation‐type metasurfaces. Adv. Opt. Mater., 9, 2100159(2021).

    [46] Y. He, Z. Xie, B. Yang, X. Chen, J. Liu, H. Ye, X. Zhou, Y. Li, S. Chen, D. Fan. Controllable photonic spin Hall effect with phase function construction. Photon. Res., 8, 963-971(2020).

    [47] Z. Ji, W. Liu, S. Krylyuk, X. Fan, Z. Zhang, A. Pan, L. Feng, A. Davydov, R. Agarwal. Photocurrent detection of the orbital angular momentum of light. Science, 368, 763-767(2020).

    [48] E. Goi, X. Chen, Q. Zhang, B. P. Cumming, S. Schoenhardt, H. Luan, M. Gu. Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip. Light Sci. Appl., 10, 40(2021).

    [49] H. Chen, J. Feng, M. Jiang, Y. Wang, J. Lin, J. Tan, P. Jin. Diffractive deep neural networks at visible wavelengths. Engineering(2021).

    [50] M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, N. Heckenberg. Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev. A, 56, 4064-4075(1997).

    [51] L. Chen, W. Zhang, Q. Lu, X. Lin. Making and identifying optical superpositions of high orbital angular momenta. Phys. Rev. A, 88, 053831(2013).

    [52] H. Sztul, R. Alfano. Double-slit interference with Laguerre-Gaussian beams. Opt. Lett., 31, 999-1001(2006).

    [53] J. Hickmann, E. Fonseca, W. Soares, S. Chávez-Cerda. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett., 105, 053904(2010).

    [54] Y. He, J. Liu, P. Wang, W. Xiong, Y. Wu, X. Zhou, Y. Cheng, Y. Gao, Y. Li, S. Chen. Detecting orbital angular momentum modes of vortex beams using feed-forward neural network. J. Lightwave Technol., 37, 5848-5855(2019).

    [55] Z. Huang, P. Wang, J. Liu, W. Xiong, Y. He, X. Zhou, J. Xiao, Y. Li, S. Chen, D. Fan. Identification of hybrid orbital angular momentum modes with deep feedforward neural network. Results Phys., 15, 102790(2019).

    [56] Z. Liu, S. Yan, H. Liu, X. Chen. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 123, 183902(2019).

    [57] L. C. Andrews, R. L. Phillips. Laser Beam Propagation through Random Media(2005).

    [58] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [59] J. Schmidhuber. Deep learning in neural networks: an overview. Neural Netw., 61, 85-117(2015).

    [60] H. Ren, W. Shao, Y. Li, F. Salim, M. Gu. Three-dimensional vectorial holography based on machine learning inverse design. Sci. Adv., 6, eaaz4261(2020).

    [61] R. Zhu, T. Qiu, J. Wang, S. Sui, C. Hao, T. Liu, Y. Li, M. Feng, A. Zhang, C. Qiu. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nat. Commun., 12, 1(2021).

    [62] Q. Zhang, H. Yu, M. Barbiero, B. Wang, M. Gu. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 8, 1(2019).

    Peipei Wang, Wenjie Xiong, Zebin Huang, Yanliang He, Zhiqiang Xie, Junmin Liu, Huapeng Ye, Ying Li, Dianyuan Fan, Shuqing Chen. Orbital angular momentum mode logical operation using optical diffractive neural network[J]. Photonics Research, 2021, 9(10): 2116
    Download Citation